cluster4npu/cluster4npu_ui/DEVELOPMENT_ROADMAP.md
2025-07-23 22:10:03 +08:00

332 lines
13 KiB
Markdown

# Development Roadmap: Visual Parallel Inference Pipeline Designer
## 🎯 Mission Statement
Transform Cluster4NPU into an intuitive visual tool that enables users to create parallel AI inference pipelines without coding knowledge, with clear visualization of speedup benefits and performance optimization.
## 🚨 Critical Missing Features Analysis
### 1. **Parallel Processing Visualization** (CRITICAL)
**Current Gap**: Users can't see how parallel processing improves performance
**Impact**: Core value proposition not visible to users
**Missing Components**:
- Visual representation of parallel execution paths
- Real-time speedup metrics (2x, 3x, 4x faster)
- Before/after performance comparison
- Parallel device utilization visualization
### 2. **Performance Benchmarking System** (CRITICAL)
**Current Gap**: No systematic way to measure and compare performance
**Impact**: Users can't quantify benefits of parallel processing
**Missing Components**:
- Automated benchmark execution
- Single vs multi-device comparison
- Throughput and latency measurement
- Performance regression testing
### 3. **Device Management Dashboard** (HIGH)
**Current Gap**: Limited visibility into hardware resources
**Impact**: Users can't optimize device allocation
**Missing Components**:
- Visual device status monitoring
- Device health and temperature tracking
- Manual device assignment interface
- Load balancing visualization
### 4. **Real-time Performance Monitoring** (HIGH)
**Current Gap**: Basic status bar insufficient for performance analysis
**Impact**: Users can't monitor and optimize running pipelines
**Missing Components**:
- Live performance graphs (FPS, latency)
- Resource utilization charts
- Bottleneck identification
- Performance alerts
## 📋 Detailed Implementation Plan
### Phase 1: Performance Visualization Foundation (Weeks 1-2)
#### 1.1 Performance Benchmarking Engine
**Location**: `core/functions/performance_benchmarker.py`
```python
class PerformanceBenchmarker:
def run_single_device_benchmark(pipeline_config, test_data)
def run_multi_device_benchmark(pipeline_config, test_data, device_count)
def calculate_speedup_metrics(single_results, multi_results)
def generate_performance_report(benchmark_results)
```
**Features**:
- Automated test execution with standardized datasets
- Precise timing measurements (inference time, throughput)
- Statistical analysis (mean, std, percentiles)
- Speedup calculation: `speedup = single_device_time / parallel_time`
#### 1.2 Performance Dashboard Widget
**Location**: `ui/components/performance_dashboard.py`
```python
class PerformanceDashboard(QWidget):
def __init__(self):
# Real-time charts using matplotlib or pyqtgraph
self.fps_chart = LiveChart("FPS")
self.latency_chart = LiveChart("Latency (ms)")
self.speedup_display = SpeedupWidget()
self.device_utilization = DeviceUtilizationChart()
```
**UI Elements**:
- **Speedup Indicator**: Large, prominent display (e.g., "3.2x FASTER")
- **Live Charts**: FPS, latency, throughput over time
- **Device Utilization**: Bar charts showing per-device usage
- **Performance Comparison**: Side-by-side single vs parallel metrics
#### 1.3 Benchmark Integration in Dashboard
**Location**: `ui/windows/dashboard.py` (enhancement)
```python
class IntegratedPipelineDashboard:
def create_performance_panel(self):
# Add performance dashboard to right panel
self.performance_dashboard = PerformanceDashboard()
def run_benchmark_test(self):
# Automated benchmark execution
# Show progress dialog
# Display results in performance dashboard
```
### Phase 2: Device Management Enhancement (Weeks 3-4)
#### 2.1 Advanced Device Manager
**Location**: `core/functions/device_manager.py`
```python
class AdvancedDeviceManager:
def detect_all_devices(self) -> List[DeviceInfo]
def get_device_health(self, device_id) -> DeviceHealth
def monitor_device_performance(self, device_id) -> DeviceMetrics
def assign_devices_to_stages(self, pipeline, device_allocation)
def optimize_device_allocation(self, pipeline) -> DeviceAllocation
```
**Features**:
- Real-time device health monitoring (temperature, utilization)
- Automatic device allocation optimization
- Device performance profiling and history
- Load balancing across available devices
#### 2.2 Device Management Panel
**Location**: `ui/components/device_management_panel.py`
```python
class DeviceManagementPanel(QWidget):
def __init__(self):
self.device_list = DeviceListWidget()
self.device_details = DeviceDetailsWidget()
self.allocation_visualizer = DeviceAllocationWidget()
self.health_monitor = DeviceHealthWidget()
```
**UI Features**:
- **Device Grid**: Visual representation of all detected devices
- **Health Indicators**: Color-coded status (green/yellow/red)
- **Assignment Interface**: Drag-and-drop device allocation to pipeline stages
- **Performance History**: Charts showing device performance over time
#### 2.3 Parallel Execution Visualizer
**Location**: `ui/components/parallel_visualizer.py`
```python
class ParallelExecutionVisualizer(QWidget):
def show_execution_flow(self, pipeline, device_allocation)
def animate_data_flow(self, pipeline_data)
def highlight_bottlenecks(self, performance_metrics)
def show_load_balancing(self, device_utilization)
```
**Visual Elements**:
- **Execution Timeline**: Show parallel processing stages
- **Data Flow Animation**: Visual representation of data moving through pipeline
- **Bottleneck Highlighting**: Red indicators for performance bottlenecks
- **Load Distribution**: Visual representation of work distribution
### Phase 3: Pipeline Optimization Assistant (Weeks 5-6)
#### 3.1 Optimization Engine
**Location**: `core/functions/optimization_engine.py`
```python
class PipelineOptimizationEngine:
def analyze_pipeline_bottlenecks(self, pipeline, metrics)
def suggest_device_allocation(self, pipeline, available_devices)
def predict_performance(self, pipeline, device_allocation)
def generate_optimization_recommendations(self, analysis)
```
**Optimization Strategies**:
- **Bottleneck Analysis**: Identify slowest stages in pipeline
- **Device Allocation**: Optimal distribution of devices across stages
- **Queue Size Tuning**: Optimize buffer sizes for throughput
- **Preprocessing Optimization**: Suggest efficient preprocessing strategies
#### 3.2 Optimization Assistant UI
**Location**: `ui/dialogs/optimization_assistant.py`
```python
class OptimizationAssistant(QDialog):
def __init__(self, pipeline):
self.analysis_results = OptimizationAnalysisWidget()
self.recommendations = RecommendationListWidget()
self.performance_prediction = PerformancePredictionWidget()
self.apply_optimizations = OptimizationApplyWidget()
```
**Features**:
- **Automatic Analysis**: One-click pipeline optimization analysis
- **Recommendation List**: Prioritized list of optimization suggestions
- **Performance Prediction**: Estimated speedup from each optimization
- **One-Click Apply**: Easy application of recommended optimizations
#### 3.3 Configuration Templates
**Location**: `core/templates/pipeline_templates.py`
```python
class PipelineTemplates:
def get_fire_detection_template(self, device_count)
def get_object_detection_template(self, device_count)
def get_classification_template(self, device_count)
def create_custom_template(self, pipeline_config)
```
**Template Categories**:
- **Common Use Cases**: Fire detection, object detection, classification
- **Device-Optimized**: Templates for 2, 4, 8 device configurations
- **Performance-Focused**: High-throughput vs low-latency configurations
- **Custom Templates**: User-created and shared templates
### Phase 4: Advanced Monitoring and Analytics (Weeks 7-8)
#### 4.1 Real-time Analytics Engine
**Location**: `core/functions/analytics_engine.py`
```python
class AnalyticsEngine:
def collect_performance_metrics(self, pipeline)
def analyze_performance_trends(self, historical_data)
def detect_performance_anomalies(self, current_metrics)
def generate_performance_insights(self, analytics_data)
```
**Analytics Features**:
- **Performance Trending**: Track performance over time
- **Anomaly Detection**: Identify unusual performance patterns
- **Predictive Analytics**: Forecast performance degradation
- **Comparative Analysis**: Compare different pipeline configurations
#### 4.2 Advanced Visualization Components
**Location**: `ui/components/advanced_charts.py`
```python
class AdvancedChartComponents:
class ParallelTimelineChart: # Show parallel execution timeline
class SpeedupComparisonChart: # Compare different configurations
class ResourceUtilizationHeatmap: # Device usage over time
class PerformanceTrendChart: # Long-term performance trends
```
**Chart Types**:
- **Timeline Charts**: Show parallel execution stages over time
- **Heatmaps**: Device utilization and performance hotspots
- **Comparison Charts**: Side-by-side performance comparisons
- **Trend Analysis**: Long-term performance patterns
#### 4.3 Reporting and Export
**Location**: `core/functions/report_generator.py`
```python
class ReportGenerator:
def generate_performance_report(self, benchmark_results)
def create_optimization_report(self, before_after_metrics)
def export_configuration_summary(self, pipeline_config)
def generate_executive_summary(self, project_metrics)
```
**Report Types**:
- **Performance Reports**: Detailed benchmark results and analysis
- **Optimization Reports**: Before/after optimization comparisons
- **Configuration Documentation**: Pipeline setup and device allocation
- **Executive Summaries**: High-level performance and ROI metrics
## 🎨 User Experience Enhancements
### Enhanced Pipeline Editor
**Location**: `ui/windows/pipeline_editor.py` (new)
```python
class EnhancedPipelineEditor(QMainWindow):
def __init__(self):
self.node_graph = NodeGraphWidget()
self.performance_overlay = PerformanceOverlayWidget()
self.device_allocation_panel = DeviceAllocationPanel()
self.optimization_assistant = OptimizationAssistantPanel()
```
**New Features**:
- **Performance Overlay**: Show performance metrics directly on pipeline nodes
- **Device Allocation Visualization**: Color-coded nodes showing device assignments
- **Real-time Feedback**: Live performance updates during pipeline execution
- **Optimization Hints**: Visual suggestions for pipeline improvements
### Guided Setup Wizard
**Location**: `ui/dialogs/setup_wizard.py`
```python
class PipelineSetupWizard(QWizard):
def __init__(self):
self.use_case_selection = UseCaseSelectionPage()
self.device_configuration = DeviceConfigurationPage()
self.performance_targets = PerformanceTargetsPage()
self.optimization_preferences = OptimizationPreferencesPage()
```
**Wizard Steps**:
1. **Use Case Selection**: Choose from common pipeline templates
2. **Device Configuration**: Automatic device detection and allocation
3. **Performance Targets**: Set FPS, latency, and throughput goals
4. **Optimization Preferences**: Choose between speed vs accuracy tradeoffs
## 📊 Success Metrics and Validation
### Key Performance Indicators
1. **Time to First Pipeline**: < 5 minutes from launch to working pipeline
2. **Speedup Visibility**: Clear display of performance improvements (2x, 3x, etc.)
3. **Optimization Impact**: Measurable performance gains from suggestions
4. **User Satisfaction**: Intuitive interface requiring minimal training
### Validation Approach
1. **Automated Testing**: Comprehensive test suite for all new components
2. **Performance Benchmarking**: Systematic testing across different hardware configurations
3. **User Testing**: Feedback from non-technical users on ease of use
4. **Performance Validation**: Verify actual speedup matches predicted improvements
## 🛠 Technical Implementation Notes
### Architecture Principles
- **Modular Design**: Each component should be independently testable
- **Performance First**: All visualizations must not impact inference performance
- **User-Centric**: Every feature should directly benefit the end user experience
- **Scalable**: Design for future expansion to more device types and use cases
### Integration Strategy
- **Extend Existing**: Build on current InferencePipeline and dashboard architecture
- **Backward Compatible**: Maintain compatibility with existing pipeline configurations
- **Progressive Enhancement**: Add features incrementally without breaking existing functionality
- **Clean Interfaces**: Well-defined APIs between components for maintainability
## 🎯 Expected Outcomes
### For End Users
- **Dramatic Productivity Increase**: Create parallel pipelines in minutes instead of hours
- **Clear ROI Demonstration**: Visual proof of performance improvements and cost savings
- **Optimized Performance**: Automatic suggestions leading to better hardware utilization
- **Professional Results**: Production-ready pipelines without deep technical knowledge
### For the Platform
- **Market Differentiation**: Unique visual approach to parallel AI inference
- **Reduced Support Burden**: Self-service optimization reduces need for expert consultation
- **Scalable Business Model**: Platform enables users to handle larger, more complex projects
- **Community Growth**: Easy-to-use tools attract broader user base
This roadmap transforms Cluster4NPU from a functional tool into an intuitive platform that makes parallel AI inference accessible to non-technical users while providing clear visualization of performance benefits.