fix: Resolve remaining numpy array comparison errors in MultiDongle
- Fix ambiguous truth value error in get_latest_inference_result method - Fix ambiguous truth value error in postprocess function - Replace direct array evaluation with explicit length checks - Use proper None checks instead of truthy evaluation on numpy arrays 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
0a70df4098
commit
e97fd7a025
@ -426,7 +426,7 @@ class MultiDongle:
|
||||
retrieval_successful = False
|
||||
break
|
||||
|
||||
if retrieval_successful and inf_node_output_list:
|
||||
if retrieval_successful and len(inf_node_output_list) > 0:
|
||||
# Process output nodes
|
||||
if output_descriptor.header.num_output_node == 1:
|
||||
raw_output_array = inf_node_output_list[0].flatten()
|
||||
@ -690,7 +690,7 @@ def postprocess(raw_model_output: list) -> float:
|
||||
Post-processes the raw model output.
|
||||
Assumes the model output is a list/array where the first element is the desired probability.
|
||||
"""
|
||||
if raw_model_output and len(raw_model_output) > 0:
|
||||
if raw_model_output is not None and len(raw_model_output) > 0:
|
||||
probability = raw_model_output[0]
|
||||
return float(probability)
|
||||
return 0.0 # Default or error value
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user