Remove legacy files moved to new modular structure
This commit is contained in:
parent
080eb5b887
commit
31b6e4c99a
191
CLAUDE.md
191
CLAUDE.md
@ -1,191 +0,0 @@
|
||||
# CLAUDE.md
|
||||
|
||||
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
||||
|
||||
## Project Overview
|
||||
|
||||
**cluster4npu** is a high-performance multi-stage inference pipeline system for Kneron NPU dongles. The project enables flexible single-stage and cascaded multi-stage AI inference workflows optimized for real-time video processing and high-throughput scenarios.
|
||||
|
||||
### Core Architecture
|
||||
|
||||
- **InferencePipeline**: Main orchestrator managing multi-stage workflows with automatic queue management and thread coordination
|
||||
- **MultiDongle**: Hardware abstraction layer for Kneron NPU devices (KL520, KL720, etc.)
|
||||
- **StageConfig**: Configuration system for individual pipeline stages
|
||||
- **PipelineData**: Data structure that flows through pipeline stages, accumulating results
|
||||
- **PreProcessor/PostProcessor**: Flexible data transformation components for inter-stage processing
|
||||
|
||||
### Key Design Patterns
|
||||
|
||||
- **Producer-Consumer**: Each stage runs in separate threads with input/output queues
|
||||
- **Pipeline Architecture**: Linear data flow through configurable stages with result accumulation
|
||||
- **Hardware Abstraction**: MultiDongle encapsulates Kneron SDK complexity
|
||||
- **Callback-Based**: Asynchronous result handling via configurable callbacks
|
||||
|
||||
## Development Commands
|
||||
|
||||
### Environment Setup
|
||||
```bash
|
||||
# Setup virtual environment with uv
|
||||
uv venv
|
||||
source .venv/bin/activate # Windows: .venv\Scripts\activate
|
||||
|
||||
# Install dependencies
|
||||
uv pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Running Examples
|
||||
```bash
|
||||
# Single-stage pipeline
|
||||
uv run python src/cluster4npu/test.py --example single
|
||||
|
||||
# Two-stage cascade pipeline
|
||||
uv run python src/cluster4npu/test.py --example cascade
|
||||
|
||||
# Complex multi-stage pipeline
|
||||
uv run python src/cluster4npu/test.py --example complex
|
||||
|
||||
# Basic MultiDongle usage
|
||||
uv run python src/cluster4npu/Multidongle.py
|
||||
|
||||
# Complete UI application with full workflow
|
||||
uv run python UI.py
|
||||
|
||||
# UI integration examples
|
||||
uv run python ui_integration_example.py
|
||||
|
||||
# Test UI configuration system
|
||||
uv run python ui_config.py
|
||||
```
|
||||
|
||||
### UI Application Workflow
|
||||
The UI.py provides a complete visual workflow:
|
||||
|
||||
1. **Dashboard/Home** - Main entry point with recent files
|
||||
2. **Pipeline Editor** - Visual node-based pipeline design
|
||||
3. **Stage Configuration** - Dongle allocation and hardware setup
|
||||
4. **Performance Estimation** - FPS calculations and optimization
|
||||
5. **Save & Deploy** - Export configurations and cost estimation
|
||||
6. **Monitoring & Management** - Real-time pipeline monitoring
|
||||
|
||||
```bash
|
||||
# Access different workflow stages directly:
|
||||
# 1. Create new pipeline → Pipeline Editor
|
||||
# 2. Configure Stages & Deploy → Stage Configuration
|
||||
# 3. Pipeline menu → Performance Analysis → Performance Panel
|
||||
# 4. Pipeline menu → Deploy Pipeline → Save & Deploy Dialog
|
||||
```
|
||||
|
||||
### Testing
|
||||
```bash
|
||||
# Run pipeline tests
|
||||
uv run python test_pipeline.py
|
||||
|
||||
# Test MultiDongle functionality
|
||||
uv run python src/cluster4npu/test.py
|
||||
```
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
- **Kneron NPU dongles**: KL520, KL720, etc.
|
||||
- **Firmware files**: `fw_scpu.bin`, `fw_ncpu.bin`
|
||||
- **Models**: `.nef` format files
|
||||
- **USB ports**: Multiple ports required for multi-dongle setups
|
||||
|
||||
## Critical Implementation Notes
|
||||
|
||||
### Pipeline Configuration
|
||||
- Each stage requires unique `stage_id` and dedicated `port_ids`
|
||||
- Queue sizes (`max_queue_size`) must be balanced between memory usage and throughput
|
||||
- Stages process sequentially - output from stage N becomes input to stage N+1
|
||||
|
||||
### Thread Safety
|
||||
- All pipeline operations are thread-safe
|
||||
- Each stage runs in isolated worker threads
|
||||
- Use callbacks for result handling, not direct queue access
|
||||
|
||||
### Data Flow
|
||||
```
|
||||
Input → Stage1 → Stage2 → ... → StageN → Output
|
||||
↓ ↓ ↓ ↓
|
||||
Queue Process Process Result
|
||||
+ Results + Results Callback
|
||||
```
|
||||
|
||||
### Hardware Management
|
||||
- Always call `initialize()` before `start()`
|
||||
- Always call `stop()` for clean shutdown
|
||||
- Firmware upload (`upload_fw=True`) only needed once per session
|
||||
- Port IDs must match actual USB connections
|
||||
|
||||
### Error Handling
|
||||
- Pipeline continues on individual stage errors
|
||||
- Failed stages return error results rather than blocking
|
||||
- Comprehensive statistics available via `get_pipeline_statistics()`
|
||||
|
||||
## UI Application Architecture
|
||||
|
||||
### Complete Workflow Components
|
||||
|
||||
- **DashboardLogin**: Main entry point with project management
|
||||
- **PipelineEditor**: Node-based visual pipeline design using NodeGraphQt
|
||||
- **StageConfigurationDialog**: Hardware allocation and dongle assignment
|
||||
- **PerformanceEstimationPanel**: Real-time performance analysis and optimization
|
||||
- **SaveDeployDialog**: Export configurations and deployment cost estimation
|
||||
- **MonitoringDashboard**: Live pipeline monitoring and cluster management
|
||||
|
||||
### UI Integration System
|
||||
|
||||
- **ui_config.py**: Configuration management and UI/core integration
|
||||
- **ui_integration_example.py**: Demonstrates conversion from UI to core tools
|
||||
- **UIIntegration class**: Bridges UI configurations to InferencePipeline
|
||||
|
||||
### Key UI Features
|
||||
|
||||
- **Auto-dongle allocation**: Smart assignment of dongles to pipeline stages
|
||||
- **Performance estimation**: Real-time FPS and latency calculations
|
||||
- **Cost analysis**: Hardware and operational cost projections
|
||||
- **Export formats**: Python scripts, JSON configs, YAML, Docker containers
|
||||
- **Live monitoring**: Real-time metrics and cluster scaling controls
|
||||
|
||||
## Code Patterns
|
||||
|
||||
### Basic Pipeline Setup
|
||||
```python
|
||||
config = StageConfig(
|
||||
stage_id="unique_name",
|
||||
port_ids=[28, 32],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="model.nef",
|
||||
upload_fw=True
|
||||
)
|
||||
|
||||
pipeline = InferencePipeline([config])
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
pipeline.set_result_callback(callback_func)
|
||||
# ... processing ...
|
||||
pipeline.stop()
|
||||
```
|
||||
|
||||
### Inter-Stage Processing
|
||||
```python
|
||||
# Custom preprocessing for stage input
|
||||
preprocessor = PreProcessor(resize_fn=custom_resize_func)
|
||||
|
||||
# Custom postprocessing for stage output
|
||||
postprocessor = PostProcessor(process_fn=custom_process_func)
|
||||
|
||||
config = StageConfig(
|
||||
# ... basic config ...
|
||||
input_preprocessor=preprocessor,
|
||||
output_postprocessor=postprocessor
|
||||
)
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
- **Queue Sizing**: Smaller queues = lower latency, larger queues = higher throughput
|
||||
- **Dongle Distribution**: Spread dongles across stages for optimal parallelization
|
||||
- **Processing Functions**: Keep preprocessors/postprocessors lightweight
|
||||
- **Memory Management**: Monitor queue sizes to prevent memory buildup
|
||||
BIN
Flowchart.jpg
BIN
Flowchart.jpg
Binary file not shown.
|
Before Width: | Height: | Size: 210 KiB |
488
README.md
488
README.md
@ -1,488 +0,0 @@
|
||||
# InferencePipeline
|
||||
|
||||
A high-performance multi-stage inference pipeline system designed for Kneron NPU dongles, enabling flexible single-stage and cascaded multi-stage AI inference workflows.
|
||||
|
||||
<!-- ## Features
|
||||
|
||||
- **Single-stage inference**: Direct replacement for MultiDongle with enhanced features
|
||||
- **Multi-stage cascaded pipelines**: Chain multiple AI models for complex workflows
|
||||
- **Flexible preprocessing/postprocessing**: Custom data transformation between stages
|
||||
- **Thread-safe design**: Concurrent processing with automatic queue management
|
||||
- **Real-time performance**: Optimized for live video streams and high-throughput scenarios
|
||||
- **Comprehensive statistics**: Built-in performance monitoring and metrics -->
|
||||
|
||||
## Installation
|
||||
|
||||
This project uses [uv](https://github.com/astral-sh/uv) for fast Python package management.
|
||||
|
||||
```bash
|
||||
# Install uv if you haven't already
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
# Create and activate virtual environment
|
||||
uv venv
|
||||
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
||||
|
||||
# Install dependencies
|
||||
uv pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Requirements
|
||||
|
||||
```txt
|
||||
"numpy>=2.2.6",
|
||||
"opencv-python>=4.11.0.86",
|
||||
```
|
||||
|
||||
### Hardware Requirements
|
||||
|
||||
- Kneron AI dongles (KL520, KL720, etc.)
|
||||
- USB ports for device connections
|
||||
- Compatible firmware files (`fw_scpu.bin`, `fw_ncpu.bin`)
|
||||
- Trained model files (`.nef` format)
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Single-Stage Pipeline
|
||||
|
||||
Replace your existing MultiDongle usage with InferencePipeline for enhanced features:
|
||||
|
||||
```python
|
||||
from InferencePipeline import InferencePipeline, StageConfig
|
||||
|
||||
# Configure single stage
|
||||
stage_config = StageConfig(
|
||||
stage_id="fire_detection",
|
||||
port_ids=[28, 32], # USB port IDs for your dongles
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="fire_detection_520.nef",
|
||||
upload_fw=True
|
||||
)
|
||||
|
||||
# Create and start pipeline
|
||||
pipeline = InferencePipeline([stage_config], pipeline_name="FireDetection")
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
# Set up result callback
|
||||
def handle_result(pipeline_data):
|
||||
result = pipeline_data.stage_results.get("fire_detection", {})
|
||||
print(f"🔥 Detection: {result.get('result', 'Unknown')} "
|
||||
f"(Probability: {result.get('probability', 0.0):.3f})")
|
||||
|
||||
pipeline.set_result_callback(handle_result)
|
||||
|
||||
# Process frames
|
||||
import cv2
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if ret:
|
||||
pipeline.put_data(frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
finally:
|
||||
cap.release()
|
||||
pipeline.stop()
|
||||
```
|
||||
|
||||
### Multi-Stage Cascade Pipeline
|
||||
|
||||
Chain multiple models for complex workflows:
|
||||
|
||||
```python
|
||||
from InferencePipeline import InferencePipeline, StageConfig
|
||||
from Multidongle import PreProcessor, PostProcessor
|
||||
|
||||
# Custom preprocessing for second stage
|
||||
def roi_extraction(frame, target_size):
|
||||
"""Extract region of interest from detection results"""
|
||||
# Extract center region as example
|
||||
h, w = frame.shape[:2]
|
||||
center_crop = frame[h//4:3*h//4, w//4:3*w//4]
|
||||
return cv2.resize(center_crop, target_size)
|
||||
|
||||
# Custom result fusion
|
||||
def combine_results(raw_output, **kwargs):
|
||||
"""Combine detection + classification results"""
|
||||
classification_prob = float(raw_output[0]) if raw_output.size > 0 else 0.0
|
||||
detection_conf = kwargs.get('detection_conf', 0.5)
|
||||
|
||||
# Weighted combination
|
||||
combined_score = (classification_prob * 0.7) + (detection_conf * 0.3)
|
||||
|
||||
return {
|
||||
'combined_probability': combined_score,
|
||||
'classification_prob': classification_prob,
|
||||
'detection_conf': detection_conf,
|
||||
'result': 'Fire Detected' if combined_score > 0.6 else 'No Fire',
|
||||
'confidence': 'High' if combined_score > 0.8 else 'Low'
|
||||
}
|
||||
|
||||
# Stage 1: Object Detection
|
||||
detection_stage = StageConfig(
|
||||
stage_id="object_detection",
|
||||
port_ids=[28, 30],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="object_detection_520.nef",
|
||||
upload_fw=True
|
||||
)
|
||||
|
||||
# Stage 2: Fire Classification with preprocessing
|
||||
classification_stage = StageConfig(
|
||||
stage_id="fire_classification",
|
||||
port_ids=[32, 34],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="fire_classification_520.nef",
|
||||
upload_fw=True,
|
||||
input_preprocessor=PreProcessor(resize_fn=roi_extraction),
|
||||
output_postprocessor=PostProcessor(process_fn=combine_results)
|
||||
)
|
||||
|
||||
# Create two-stage pipeline
|
||||
pipeline = InferencePipeline(
|
||||
[detection_stage, classification_stage],
|
||||
pipeline_name="DetectionClassificationCascade"
|
||||
)
|
||||
|
||||
# Enhanced result handler
|
||||
def handle_cascade_result(pipeline_data):
|
||||
detection = pipeline_data.stage_results.get("object_detection", {})
|
||||
classification = pipeline_data.stage_results.get("fire_classification", {})
|
||||
|
||||
print(f"🎯 Detection: {detection.get('result', 'Unknown')} "
|
||||
f"(Conf: {detection.get('probability', 0.0):.3f})")
|
||||
print(f"🔥 Classification: {classification.get('result', 'Unknown')} "
|
||||
f"(Combined: {classification.get('combined_probability', 0.0):.3f})")
|
||||
print(f"⏱️ Processing Time: {pipeline_data.metadata.get('total_processing_time', 0.0):.3f}s")
|
||||
print("-" * 50)
|
||||
|
||||
pipeline.set_result_callback(handle_cascade_result)
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
# Your processing loop here...
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Example 1: Real-time Webcam Processing
|
||||
|
||||
```python
|
||||
from InferencePipeline import InferencePipeline, StageConfig
|
||||
from Multidongle import WebcamSource
|
||||
|
||||
def run_realtime_detection():
|
||||
# Configure pipeline
|
||||
config = StageConfig(
|
||||
stage_id="realtime_detection",
|
||||
port_ids=[28, 32],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="your_model.nef",
|
||||
upload_fw=True,
|
||||
max_queue_size=30 # Prevent memory buildup
|
||||
)
|
||||
|
||||
pipeline = InferencePipeline([config])
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
# Use webcam source
|
||||
source = WebcamSource(camera_id=0)
|
||||
source.start()
|
||||
|
||||
def display_results(pipeline_data):
|
||||
result = pipeline_data.stage_results["realtime_detection"]
|
||||
probability = result.get('probability', 0.0)
|
||||
detection = result.get('result', 'Unknown')
|
||||
|
||||
# Your visualization logic here
|
||||
print(f"Detection: {detection} ({probability:.3f})")
|
||||
|
||||
pipeline.set_result_callback(display_results)
|
||||
|
||||
try:
|
||||
while True:
|
||||
frame = source.get_frame()
|
||||
if frame is not None:
|
||||
pipeline.put_data(frame)
|
||||
time.sleep(0.033) # ~30 FPS
|
||||
except KeyboardInterrupt:
|
||||
print("Stopping...")
|
||||
finally:
|
||||
source.stop()
|
||||
pipeline.stop()
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_realtime_detection()
|
||||
```
|
||||
|
||||
### Example 2: Complex Multi-Modal Pipeline
|
||||
|
||||
```python
|
||||
def run_multimodal_pipeline():
|
||||
"""Multi-modal fire detection with RGB, edge, and thermal-like analysis"""
|
||||
|
||||
def edge_preprocessing(frame, target_size):
|
||||
"""Extract edge features"""
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
edges = cv2.Canny(gray, 50, 150)
|
||||
edges_3ch = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
|
||||
return cv2.resize(edges_3ch, target_size)
|
||||
|
||||
def thermal_preprocessing(frame, target_size):
|
||||
"""Simulate thermal processing"""
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
thermal_like = hsv[:, :, 2] # Value channel
|
||||
thermal_3ch = cv2.cvtColor(thermal_like, cv2.COLOR_GRAY2BGR)
|
||||
return cv2.resize(thermal_3ch, target_size)
|
||||
|
||||
def fusion_postprocessing(raw_output, **kwargs):
|
||||
"""Fuse results from multiple modalities"""
|
||||
if raw_output.size > 0:
|
||||
current_prob = float(raw_output[0])
|
||||
rgb_conf = kwargs.get('rgb_conf', 0.5)
|
||||
edge_conf = kwargs.get('edge_conf', 0.5)
|
||||
|
||||
# Weighted fusion
|
||||
fused_prob = (current_prob * 0.5) + (rgb_conf * 0.3) + (edge_conf * 0.2)
|
||||
|
||||
return {
|
||||
'fused_probability': fused_prob,
|
||||
'modality_scores': {
|
||||
'thermal': current_prob,
|
||||
'rgb': rgb_conf,
|
||||
'edge': edge_conf
|
||||
},
|
||||
'result': 'Fire Detected' if fused_prob > 0.6 else 'No Fire',
|
||||
'confidence': 'Very High' if fused_prob > 0.9 else 'High' if fused_prob > 0.7 else 'Medium'
|
||||
}
|
||||
return {'fused_probability': 0.0, 'result': 'No Fire'}
|
||||
|
||||
# Define stages
|
||||
stages = [
|
||||
StageConfig("rgb_analysis", [28, 30], "fw_scpu.bin", "fw_ncpu.bin", "rgb_model.nef", True),
|
||||
StageConfig("edge_analysis", [32, 34], "fw_scpu.bin", "fw_ncpu.bin", "edge_model.nef", True,
|
||||
input_preprocessor=PreProcessor(resize_fn=edge_preprocessing)),
|
||||
StageConfig("thermal_analysis", [36, 38], "fw_scpu.bin", "fw_ncpu.bin", "thermal_model.nef", True,
|
||||
input_preprocessor=PreProcessor(resize_fn=thermal_preprocessing)),
|
||||
StageConfig("fusion", [40, 42], "fw_scpu.bin", "fw_ncpu.bin", "fusion_model.nef", True,
|
||||
output_postprocessor=PostProcessor(process_fn=fusion_postprocessing))
|
||||
]
|
||||
|
||||
pipeline = InferencePipeline(stages, pipeline_name="MultiModalFireDetection")
|
||||
|
||||
def handle_multimodal_result(pipeline_data):
|
||||
print(f"\n🔥 Multi-Modal Fire Detection Results:")
|
||||
for stage_id, result in pipeline_data.stage_results.items():
|
||||
if 'probability' in result:
|
||||
print(f" {stage_id}: {result['result']} ({result['probability']:.3f})")
|
||||
|
||||
if 'fusion' in pipeline_data.stage_results:
|
||||
fusion = pipeline_data.stage_results['fusion']
|
||||
print(f" 🎯 FINAL: {fusion['result']} (Fused: {fusion['fused_probability']:.3f})")
|
||||
print(f" Confidence: {fusion.get('confidence', 'Unknown')}")
|
||||
|
||||
pipeline.set_result_callback(handle_multimodal_result)
|
||||
|
||||
# Start pipeline
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
# Your processing logic here...
|
||||
```
|
||||
|
||||
### Example 3: Batch Processing
|
||||
|
||||
```python
|
||||
def process_image_batch(image_paths):
|
||||
"""Process a batch of images through pipeline"""
|
||||
|
||||
config = StageConfig(
|
||||
stage_id="batch_processing",
|
||||
port_ids=[28, 32],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="batch_model.nef",
|
||||
upload_fw=True
|
||||
)
|
||||
|
||||
pipeline = InferencePipeline([config])
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
results = []
|
||||
|
||||
def collect_result(pipeline_data):
|
||||
result = pipeline_data.stage_results["batch_processing"]
|
||||
results.append({
|
||||
'pipeline_id': pipeline_data.pipeline_id,
|
||||
'result': result,
|
||||
'processing_time': pipeline_data.metadata.get('total_processing_time', 0.0)
|
||||
})
|
||||
|
||||
pipeline.set_result_callback(collect_result)
|
||||
|
||||
# Submit all images
|
||||
for img_path in image_paths:
|
||||
image = cv2.imread(img_path)
|
||||
if image is not None:
|
||||
pipeline.put_data(image)
|
||||
|
||||
# Wait for all results
|
||||
import time
|
||||
while len(results) < len(image_paths):
|
||||
time.sleep(0.1)
|
||||
|
||||
pipeline.stop()
|
||||
return results
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### StageConfig Parameters
|
||||
|
||||
```python
|
||||
StageConfig(
|
||||
stage_id="unique_stage_name", # Required: Unique identifier
|
||||
port_ids=[28, 32], # Required: USB port IDs for dongles
|
||||
scpu_fw_path="fw_scpu.bin", # Required: SCPU firmware path
|
||||
ncpu_fw_path="fw_ncpu.bin", # Required: NCPU firmware path
|
||||
model_path="model.nef", # Required: Model file path
|
||||
upload_fw=True, # Upload firmware on init
|
||||
max_queue_size=50, # Queue size limit
|
||||
input_preprocessor=None, # Optional: Inter-stage preprocessing
|
||||
output_postprocessor=None, # Optional: Inter-stage postprocessing
|
||||
stage_preprocessor=None, # Optional: MultiDongle preprocessing
|
||||
stage_postprocessor=None # Optional: MultiDongle postprocessing
|
||||
)
|
||||
```
|
||||
|
||||
### Performance Tuning
|
||||
|
||||
```python
|
||||
# For high-throughput scenarios
|
||||
config = StageConfig(
|
||||
stage_id="high_performance",
|
||||
port_ids=[28, 30, 32, 34], # Use more dongles
|
||||
max_queue_size=100, # Larger queues
|
||||
# ... other params
|
||||
)
|
||||
|
||||
# For low-latency scenarios
|
||||
config = StageConfig(
|
||||
stage_id="low_latency",
|
||||
port_ids=[28, 32],
|
||||
max_queue_size=10, # Smaller queues
|
||||
# ... other params
|
||||
)
|
||||
```
|
||||
|
||||
## Statistics and Monitoring
|
||||
|
||||
```python
|
||||
# Enable statistics reporting
|
||||
def print_stats(stats):
|
||||
print(f"\n📊 Pipeline Statistics:")
|
||||
print(f" Input: {stats['pipeline_input_submitted']}")
|
||||
print(f" Completed: {stats['pipeline_completed']}")
|
||||
print(f" Success Rate: {stats['pipeline_completed']/max(stats['pipeline_input_submitted'], 1)*100:.1f}%")
|
||||
|
||||
for stage_stat in stats['stage_statistics']:
|
||||
print(f" Stage {stage_stat['stage_id']}: "
|
||||
f"Processed={stage_stat['processed_count']}, "
|
||||
f"AvgTime={stage_stat['avg_processing_time']:.3f}s")
|
||||
|
||||
pipeline.set_stats_callback(print_stats)
|
||||
pipeline.start_stats_reporting(interval=5.0) # Report every 5 seconds
|
||||
```
|
||||
|
||||
## Running Examples
|
||||
|
||||
The project includes comprehensive examples in `test.py`:
|
||||
|
||||
```bash
|
||||
# Single-stage pipeline
|
||||
uv run python test.py --example single
|
||||
|
||||
# Two-stage cascade pipeline
|
||||
uv run python test.py --example cascade
|
||||
|
||||
# Complex multi-stage pipeline
|
||||
uv run python test.py --example complex
|
||||
```
|
||||
|
||||
## API Reference
|
||||
|
||||
### InferencePipeline
|
||||
|
||||
Main pipeline orchestrator class.
|
||||
|
||||
**Methods:**
|
||||
- `initialize()`: Initialize all pipeline stages
|
||||
- `start()`: Start pipeline processing threads
|
||||
- `stop()`: Gracefully stop pipeline
|
||||
- `put_data(data, timeout=1.0)`: Submit data for processing
|
||||
- `get_result(timeout=0.1)`: Get processed results
|
||||
- `set_result_callback(callback)`: Set success callback
|
||||
- `set_error_callback(callback)`: Set error callback
|
||||
- `get_pipeline_statistics()`: Get performance metrics
|
||||
|
||||
### StageConfig
|
||||
|
||||
Configuration for individual pipeline stages.
|
||||
|
||||
### PipelineData
|
||||
|
||||
Data structure flowing through pipeline stages.
|
||||
|
||||
**Attributes:**
|
||||
- `data`: Main data payload
|
||||
- `metadata`: Processing metadata
|
||||
- `stage_results`: Results from each stage
|
||||
- `pipeline_id`: Unique identifier
|
||||
- `timestamp`: Creation timestamp
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
1. **Queue Sizing**: Balance memory usage vs. throughput with `max_queue_size`
|
||||
2. **Dongle Distribution**: Distribute dongles across stages for optimal performance
|
||||
3. **Preprocessing**: Minimize expensive operations in preprocessors
|
||||
4. **Memory Management**: Monitor queue sizes and processing times
|
||||
5. **Threading**: Pipeline uses multiple threads - ensure thread-safe operations
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Pipeline hangs or stops processing:**
|
||||
- Check dongle connections and firmware compatibility
|
||||
- Monitor queue sizes for bottlenecks
|
||||
- Verify model file paths and formats
|
||||
|
||||
**High memory usage:**
|
||||
- Reduce `max_queue_size` parameters
|
||||
- Ensure proper cleanup in custom processors
|
||||
- Monitor statistics for processing times
|
||||
|
||||
**Poor performance:**
|
||||
- Distribute dongles optimally across stages
|
||||
- Profile preprocessing/postprocessing functions
|
||||
- Consider batch processing for high throughput
|
||||
|
||||
### Debug Mode
|
||||
|
||||
Enable detailed logging for troubleshooting:
|
||||
|
||||
```python
|
||||
import logging
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
# Pipeline will output detailed processing information
|
||||
```
|
||||
521
multidongle.py
521
multidongle.py
@ -1,521 +0,0 @@
|
||||
from typing import Union, Tuple
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import time
|
||||
import threading
|
||||
import queue
|
||||
import numpy as np
|
||||
import kp
|
||||
import cv2
|
||||
import time
|
||||
|
||||
class MultiDongle:
|
||||
# Curently, only BGR565, RGB8888, YUYV, and RAW8 formats are supported
|
||||
_FORMAT_MAPPING = {
|
||||
'BGR565': kp.ImageFormat.KP_IMAGE_FORMAT_RGB565,
|
||||
'RGB8888': kp.ImageFormat.KP_IMAGE_FORMAT_RGBA8888,
|
||||
'YUYV': kp.ImageFormat.KP_IMAGE_FORMAT_YUYV,
|
||||
'RAW8': kp.ImageFormat.KP_IMAGE_FORMAT_RAW8,
|
||||
# 'YCBCR422_CRY1CBY0': kp.ImageFormat.KP_IMAGE_FORMAT_YCBCR422_CRY1CBY0,
|
||||
# 'YCBCR422_CBY1CRY0': kp.ImageFormat.KP_IMAGE_FORMAT_CBY1CRY0,
|
||||
# 'YCBCR422_Y1CRY0CB': kp.ImageFormat.KP_IMAGE_FORMAT_Y1CRY0CB,
|
||||
# 'YCBCR422_Y1CBY0CR': kp.ImageFormat.KP_IMAGE_FORMAT_Y1CBY0CR,
|
||||
# 'YCBCR422_CRY0CBY1': kp.ImageFormat.KP_IMAGE_FORMAT_CRY0CBY1,
|
||||
# 'YCBCR422_CBY0CRY1': kp.ImageFormat.KP_IMAGE_FORMAT_CBY0CRY1,
|
||||
# 'YCBCR422_Y0CRY1CB': kp.ImageFormat.KP_IMAGE_FORMAT_Y0CRY1CB,
|
||||
# 'YCBCR422_Y0CBY1CR': kp.ImageFormat.KP_IMAGE_FORMAT_Y0CBY1CR,
|
||||
}
|
||||
|
||||
def __init__(self, port_id: list, scpu_fw_path: str, ncpu_fw_path: str, model_path: str, upload_fw: bool = False):
|
||||
"""
|
||||
Initialize the MultiDongle class.
|
||||
:param port_id: List of USB port IDs for the same layer's devices.
|
||||
:param scpu_fw_path: Path to the SCPU firmware file.
|
||||
:param ncpu_fw_path: Path to the NCPU firmware file.
|
||||
:param model_path: Path to the model file.
|
||||
:param upload_fw: Flag to indicate whether to upload firmware.
|
||||
"""
|
||||
self.port_id = port_id
|
||||
self.upload_fw = upload_fw
|
||||
|
||||
# Check if the firmware is needed
|
||||
if self.upload_fw:
|
||||
self.scpu_fw_path = scpu_fw_path
|
||||
self.ncpu_fw_path = ncpu_fw_path
|
||||
|
||||
self.model_path = model_path
|
||||
self.device_group = None
|
||||
|
||||
# generic_inference_input_descriptor will be prepared in initialize
|
||||
self.model_nef_descriptor = None
|
||||
self.generic_inference_input_descriptor = None
|
||||
# Queues for data
|
||||
# Input queue for images to be sent
|
||||
self._input_queue = queue.Queue()
|
||||
# Output queue for received results
|
||||
self._output_queue = queue.Queue()
|
||||
|
||||
# Threading attributes
|
||||
self._send_thread = None
|
||||
self._receive_thread = None
|
||||
self._stop_event = threading.Event() # Event to signal threads to stop
|
||||
|
||||
self._inference_counter = 0
|
||||
|
||||
def initialize(self):
|
||||
"""
|
||||
Connect devices, upload firmware (if upload_fw is True), and upload model.
|
||||
Must be called before start().
|
||||
"""
|
||||
# Connect device and assign to self.device_group
|
||||
try:
|
||||
print('[Connect Device]')
|
||||
self.device_group = kp.core.connect_devices(usb_port_ids=self.port_id)
|
||||
print(' - Success')
|
||||
except kp.ApiKPException as exception:
|
||||
print('Error: connect device fail, port ID = \'{}\', error msg: [{}]'.format(self.port_id, str(exception)))
|
||||
sys.exit(1)
|
||||
|
||||
# setting timeout of the usb communication with the device
|
||||
# print('[Set Device Timeout]')
|
||||
# kp.core.set_timeout(device_group=self.device_group, milliseconds=5000)
|
||||
# print(' - Success')
|
||||
|
||||
if self.upload_fw:
|
||||
try:
|
||||
print('[Upload Firmware]')
|
||||
kp.core.load_firmware_from_file(device_group=self.device_group,
|
||||
scpu_fw_path=self.scpu_fw_path,
|
||||
ncpu_fw_path=self.ncpu_fw_path)
|
||||
print(' - Success')
|
||||
except kp.ApiKPException as exception:
|
||||
print('Error: upload firmware failed, error = \'{}\''.format(str(exception)))
|
||||
sys.exit(1)
|
||||
|
||||
# upload model to device
|
||||
try:
|
||||
print('[Upload Model]')
|
||||
self.model_nef_descriptor = kp.core.load_model_from_file(device_group=self.device_group,
|
||||
file_path=self.model_path)
|
||||
print(' - Success')
|
||||
except kp.ApiKPException as exception:
|
||||
print('Error: upload model failed, error = \'{}\''.format(str(exception)))
|
||||
sys.exit(1)
|
||||
|
||||
# Extract model input dimensions automatically from model metadata
|
||||
if self.model_nef_descriptor and self.model_nef_descriptor.models:
|
||||
model = self.model_nef_descriptor.models[0]
|
||||
if hasattr(model, 'input_nodes') and model.input_nodes:
|
||||
input_node = model.input_nodes[0]
|
||||
# From your JSON: "shape_npu": [1, 3, 128, 128] -> (width, height)
|
||||
shape = input_node.tensor_shape_info.data.shape_npu
|
||||
self.model_input_shape = (shape[3], shape[2]) # (width, height)
|
||||
self.model_input_channels = shape[1] # 3 for RGB
|
||||
print(f"Model input shape detected: {self.model_input_shape}, channels: {self.model_input_channels}")
|
||||
else:
|
||||
self.model_input_shape = (128, 128) # fallback
|
||||
self.model_input_channels = 3
|
||||
print("Using default input shape (128, 128)")
|
||||
else:
|
||||
self.model_input_shape = (128, 128)
|
||||
self.model_input_channels = 3
|
||||
print("Model info not available, using default shape")
|
||||
|
||||
# Prepare generic inference input descriptor after model is loaded
|
||||
if self.model_nef_descriptor:
|
||||
self.generic_inference_input_descriptor = kp.GenericImageInferenceDescriptor(
|
||||
model_id=self.model_nef_descriptor.models[0].id,
|
||||
)
|
||||
else:
|
||||
print("Warning: Could not get generic inference input descriptor from model.")
|
||||
self.generic_inference_input_descriptor = None
|
||||
|
||||
def preprocess_frame(self, frame: np.ndarray, target_format: str = 'BGR565') -> np.ndarray:
|
||||
"""
|
||||
Preprocess frame for inference
|
||||
"""
|
||||
resized_frame = cv2.resize(frame, self.model_input_shape)
|
||||
|
||||
if target_format == 'BGR565':
|
||||
return cv2.cvtColor(resized_frame, cv2.COLOR_BGR2BGR565)
|
||||
elif target_format == 'RGB8888':
|
||||
return cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGBA)
|
||||
elif target_format == 'YUYV':
|
||||
return cv2.cvtColor(resized_frame, cv2.COLOR_BGR2YUV_YUYV)
|
||||
else:
|
||||
return resized_frame # RAW8 or other formats
|
||||
|
||||
def get_latest_inference_result(self, timeout: float = 0.01) -> Tuple[float, str]:
|
||||
"""
|
||||
Get the latest inference result
|
||||
Returns: (probability, result_string) or (None, None) if no result
|
||||
"""
|
||||
output_descriptor = self.get_output(timeout=timeout)
|
||||
if not output_descriptor:
|
||||
return None, None
|
||||
|
||||
# Process the output descriptor
|
||||
if hasattr(output_descriptor, 'header') and \
|
||||
hasattr(output_descriptor.header, 'num_output_node') and \
|
||||
hasattr(output_descriptor.header, 'inference_number'):
|
||||
|
||||
inf_node_output_list = []
|
||||
retrieval_successful = True
|
||||
|
||||
for node_idx in range(output_descriptor.header.num_output_node):
|
||||
try:
|
||||
inference_float_node_output = kp.inference.generic_inference_retrieve_float_node(
|
||||
node_idx=node_idx,
|
||||
generic_raw_result=output_descriptor,
|
||||
channels_ordering=kp.ChannelOrdering.KP_CHANNEL_ORDERING_CHW
|
||||
)
|
||||
inf_node_output_list.append(inference_float_node_output.ndarray.copy())
|
||||
except kp.ApiKPException as e:
|
||||
retrieval_successful = False
|
||||
break
|
||||
except Exception as e:
|
||||
retrieval_successful = False
|
||||
break
|
||||
|
||||
if retrieval_successful and inf_node_output_list:
|
||||
# Process output nodes
|
||||
if output_descriptor.header.num_output_node == 1:
|
||||
raw_output_array = inf_node_output_list[0].flatten()
|
||||
else:
|
||||
concatenated_outputs = [arr.flatten() for arr in inf_node_output_list]
|
||||
raw_output_array = np.concatenate(concatenated_outputs) if concatenated_outputs else np.array([])
|
||||
|
||||
if raw_output_array.size > 0:
|
||||
probability = postprocess(raw_output_array)
|
||||
result_str = "Fire" if probability > 0.5 else "No Fire"
|
||||
return probability, result_str
|
||||
|
||||
return None, None
|
||||
|
||||
|
||||
# Modified _send_thread_func to get data from input queue
|
||||
def _send_thread_func(self):
|
||||
"""Internal function run by the send thread, gets images from input queue."""
|
||||
print("Send thread started.")
|
||||
while not self._stop_event.is_set():
|
||||
if self.generic_inference_input_descriptor is None:
|
||||
# Wait for descriptor to be ready or stop
|
||||
self._stop_event.wait(0.1) # Avoid busy waiting
|
||||
continue
|
||||
|
||||
try:
|
||||
# Get image and format from the input queue
|
||||
# Blocks until an item is available or stop event is set/timeout occurs
|
||||
try:
|
||||
# Use get with timeout or check stop event in a loop
|
||||
# This pattern allows thread to check stop event while waiting on queue
|
||||
item = self._input_queue.get(block=True, timeout=0.1)
|
||||
# Check if this is our sentinel value
|
||||
if item is None:
|
||||
continue
|
||||
|
||||
# Now safely unpack the tuple
|
||||
image_data, image_format_enum = item
|
||||
except queue.Empty:
|
||||
# If queue is empty after timeout, check stop event and continue loop
|
||||
continue
|
||||
|
||||
# Configure and send the image
|
||||
self._inference_counter += 1 # Increment counter for each image
|
||||
self.generic_inference_input_descriptor.inference_number = self._inference_counter
|
||||
self.generic_inference_input_descriptor.input_node_image_list = [kp.GenericInputNodeImage(
|
||||
image=image_data,
|
||||
image_format=image_format_enum, # Use the format from the queue
|
||||
resize_mode=kp.ResizeMode.KP_RESIZE_ENABLE,
|
||||
padding_mode=kp.PaddingMode.KP_PADDING_CORNER,
|
||||
normalize_mode=kp.NormalizeMode.KP_NORMALIZE_KNERON
|
||||
)]
|
||||
|
||||
kp.inference.generic_image_inference_send(device_group=self.device_group,
|
||||
generic_inference_input_descriptor=self.generic_inference_input_descriptor)
|
||||
# print("Image sent.") # Optional: add log
|
||||
# No need for sleep here usually, as queue.get is blocking
|
||||
except kp.ApiKPException as exception:
|
||||
print(f' - Error in send thread: inference send failed, error = {exception}')
|
||||
self._stop_event.set() # Signal other thread to stop
|
||||
except Exception as e:
|
||||
print(f' - Unexpected error in send thread: {e}')
|
||||
self._stop_event.set()
|
||||
|
||||
print("Send thread stopped.")
|
||||
|
||||
# _receive_thread_func remains the same
|
||||
def _receive_thread_func(self):
|
||||
"""Internal function run by the receive thread, puts results into output queue."""
|
||||
print("Receive thread started.")
|
||||
while not self._stop_event.is_set():
|
||||
try:
|
||||
generic_inference_output_descriptor = kp.inference.generic_image_inference_receive(device_group=self.device_group)
|
||||
self._output_queue.put(generic_inference_output_descriptor)
|
||||
except kp.ApiKPException as exception:
|
||||
if not self._stop_event.is_set(): # Avoid printing error if we are already stopping
|
||||
print(f' - Error in receive thread: inference receive failed, error = {exception}')
|
||||
self._stop_event.set()
|
||||
except Exception as e:
|
||||
print(f' - Unexpected error in receive thread: {e}')
|
||||
self._stop_event.set()
|
||||
|
||||
print("Receive thread stopped.")
|
||||
|
||||
# start method signature changed (no image/format parameters)
|
||||
def start(self):
|
||||
"""
|
||||
Start the send and receive threads.
|
||||
Must be called after initialize().
|
||||
"""
|
||||
if self.device_group is None:
|
||||
raise RuntimeError("MultiDongle not initialized. Call initialize() first.")
|
||||
|
||||
if self._send_thread is None or not self._send_thread.is_alive():
|
||||
self._stop_event.clear() # Clear stop event for a new start
|
||||
self._send_thread = threading.Thread(target=self._send_thread_func, daemon=True)
|
||||
self._send_thread.start()
|
||||
print("Send thread started.")
|
||||
|
||||
if self._receive_thread is None or not self._receive_thread.is_alive():
|
||||
self._receive_thread = threading.Thread(target=self._receive_thread_func, daemon=True)
|
||||
self._receive_thread.start()
|
||||
print("Receive thread started.")
|
||||
|
||||
# stop method remains the same
|
||||
# def stop(self):
|
||||
# """
|
||||
# Signal the threads to stop and wait for them to finish.
|
||||
# """
|
||||
# print("Stopping threads...")
|
||||
# self._stop_event.set() # Signal stop
|
||||
|
||||
# # Put a dummy item in the input queue to unblock the send thread if it's waiting
|
||||
# try:
|
||||
# self._input_queue.put(None)
|
||||
# except Exception as e:
|
||||
# print(f"Error putting dummy item in input queue: {e}")
|
||||
|
||||
# if self._send_thread and self._send_thread.is_alive():
|
||||
# self._send_thread.join()
|
||||
# print("Send thread joined.")
|
||||
|
||||
# if self._receive_thread and self._receive_thread.is_alive():
|
||||
# # DON'T disconnect the device group unless absolutely necessary
|
||||
# # Instead, use a timeout and warning
|
||||
# self._receive_thread.join(timeout=5)
|
||||
# if self._receive_thread.is_alive():
|
||||
# print("Warning: Receive thread did not join within timeout. It might be blocked.")
|
||||
|
||||
# # Only disconnect as a last resort for stuck threads
|
||||
# if self.device_group:
|
||||
# try:
|
||||
# print("Thread stuck - disconnecting device group as last resort...")
|
||||
# kp.core.disconnect_devices(device_group=self.device_group)
|
||||
# # IMPORTANT: Re-connect immediately to keep device available
|
||||
# self.device_group = kp.core.connect_devices(usb_port_ids=self.port_id)
|
||||
# print("Device group reconnected.")
|
||||
# except Exception as e:
|
||||
# print(f"Error during device reconnect: {e}")
|
||||
# self.device_group = None # Only set to None if reconnect fails
|
||||
# else:
|
||||
# print("Receive thread joined.")
|
||||
|
||||
# print("Threads stopped.")
|
||||
|
||||
def stop(self):
|
||||
"""Improved stop method with better cleanup"""
|
||||
if self._stop_event.is_set():
|
||||
return # Already stopping
|
||||
|
||||
print("Stopping threads...")
|
||||
self._stop_event.set()
|
||||
|
||||
# Clear queues to unblock threads
|
||||
while not self._input_queue.empty():
|
||||
try:
|
||||
self._input_queue.get_nowait()
|
||||
except queue.Empty:
|
||||
break
|
||||
|
||||
# Signal send thread to wake up
|
||||
self._input_queue.put(None)
|
||||
|
||||
# Join threads with timeout
|
||||
for thread, name in [(self._send_thread, "Send"), (self._receive_thread, "Receive")]:
|
||||
if thread and thread.is_alive():
|
||||
thread.join(timeout=2.0)
|
||||
if thread.is_alive():
|
||||
print(f"Warning: {name} thread didn't stop cleanly")
|
||||
|
||||
def put_input(self, image: Union[str, np.ndarray], format: str, target_size: Tuple[int, int] = None):
|
||||
"""
|
||||
Put an image into the input queue with flexible preprocessing
|
||||
"""
|
||||
if isinstance(image, str):
|
||||
image_data = cv2.imread(image)
|
||||
if image_data is None:
|
||||
raise FileNotFoundError(f"Image file not found at {image}")
|
||||
if target_size:
|
||||
image_data = cv2.resize(image_data, target_size)
|
||||
elif isinstance(image, np.ndarray):
|
||||
# Don't modify original array, make copy if needed
|
||||
image_data = image.copy() if target_size is None else cv2.resize(image, target_size)
|
||||
else:
|
||||
raise ValueError("Image must be a file path (str) or a numpy array (ndarray).")
|
||||
|
||||
if format in self._FORMAT_MAPPING:
|
||||
image_format_enum = self._FORMAT_MAPPING[format]
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: {format}")
|
||||
|
||||
self._input_queue.put((image_data, image_format_enum))
|
||||
|
||||
def get_output(self, timeout: float = None):
|
||||
"""
|
||||
Get the next received data from the output queue.
|
||||
This method is non-blocking by default unless a timeout is specified.
|
||||
:param timeout: Time in seconds to wait for data. If None, it's non-blocking.
|
||||
:return: Received data (e.g., kp.GenericInferenceOutputDescriptor) or None if no data available within timeout.
|
||||
"""
|
||||
try:
|
||||
return self._output_queue.get(block=timeout is not None, timeout=timeout)
|
||||
except queue.Empty:
|
||||
return None
|
||||
|
||||
def __del__(self):
|
||||
"""Ensure resources are released when the object is garbage collected."""
|
||||
self.stop()
|
||||
if self.device_group:
|
||||
try:
|
||||
kp.core.disconnect_devices(device_group=self.device_group)
|
||||
print("Device group disconnected in destructor.")
|
||||
except Exception as e:
|
||||
print(f"Error disconnecting device group in destructor: {e}")
|
||||
|
||||
def postprocess(raw_model_output: list) -> float:
|
||||
"""
|
||||
Post-processes the raw model output.
|
||||
Assumes the model output is a list/array where the first element is the desired probability.
|
||||
"""
|
||||
if raw_model_output and len(raw_model_output) > 0:
|
||||
probability = raw_model_output[0]
|
||||
return float(probability)
|
||||
return 0.0 # Default or error value
|
||||
|
||||
class WebcamInferenceRunner:
|
||||
def __init__(self, multidongle: MultiDongle, image_format: str = 'BGR565'):
|
||||
self.multidongle = multidongle
|
||||
self.image_format = image_format
|
||||
self.latest_probability = 0.0
|
||||
self.result_str = "No Fire"
|
||||
|
||||
# Statistics tracking
|
||||
self.processed_inference_count = 0
|
||||
self.inference_fps_start_time = None
|
||||
self.display_fps_start_time = None
|
||||
self.display_frame_counter = 0
|
||||
|
||||
def run(self, camera_id: int = 0):
|
||||
cap = cv2.VideoCapture(camera_id)
|
||||
if not cap.isOpened():
|
||||
raise RuntimeError("Cannot open webcam")
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# Track display FPS
|
||||
if self.display_fps_start_time is None:
|
||||
self.display_fps_start_time = time.time()
|
||||
self.display_frame_counter += 1
|
||||
|
||||
# Preprocess and send frame
|
||||
processed_frame = self.multidongle.preprocess_frame(frame, self.image_format)
|
||||
self.multidongle.put_input(processed_frame, self.image_format)
|
||||
|
||||
# Get inference result
|
||||
prob, result = self.multidongle.get_latest_inference_result()
|
||||
if prob is not None:
|
||||
# Track inference FPS
|
||||
if self.inference_fps_start_time is None:
|
||||
self.inference_fps_start_time = time.time()
|
||||
self.processed_inference_count += 1
|
||||
|
||||
self.latest_probability = prob
|
||||
self.result_str = result
|
||||
|
||||
# Display frame with results
|
||||
self._display_results(frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
finally:
|
||||
# self._print_statistics()
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
def _display_results(self, frame):
|
||||
display_frame = frame.copy()
|
||||
text_color = (0, 255, 0) if "Fire" in self.result_str else (0, 0, 255)
|
||||
|
||||
# Display inference result
|
||||
cv2.putText(display_frame, f"{self.result_str} (Prob: {self.latest_probability:.2f})",
|
||||
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
|
||||
|
||||
# Calculate and display inference FPS
|
||||
if self.inference_fps_start_time and self.processed_inference_count > 0:
|
||||
elapsed_time = time.time() - self.inference_fps_start_time
|
||||
if elapsed_time > 0:
|
||||
inference_fps = self.processed_inference_count / elapsed_time
|
||||
cv2.putText(display_frame, f"Inference FPS: {inference_fps:.2f}",
|
||||
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
|
||||
|
||||
cv2.imshow('Fire Detection', display_frame)
|
||||
|
||||
# def _print_statistics(self):
|
||||
# """Print final statistics"""
|
||||
# print(f"\n--- Summary ---")
|
||||
# print(f"Total inferences processed: {self.processed_inference_count}")
|
||||
|
||||
# if self.inference_fps_start_time and self.processed_inference_count > 0:
|
||||
# elapsed = time.time() - self.inference_fps_start_time
|
||||
# if elapsed > 0:
|
||||
# avg_inference_fps = self.processed_inference_count / elapsed
|
||||
# print(f"Average Inference FPS: {avg_inference_fps:.2f}")
|
||||
|
||||
# if self.display_fps_start_time and self.display_frame_counter > 0:
|
||||
# elapsed = time.time() - self.display_fps_start_time
|
||||
# if elapsed > 0:
|
||||
# avg_display_fps = self.display_frame_counter / elapsed
|
||||
# print(f"Average Display FPS: {avg_display_fps:.2f}")
|
||||
|
||||
if __name__ == "_main_":
|
||||
PORT_IDS = [28, 32]
|
||||
SCPU_FW = r'fw_scpu.bin'
|
||||
NCPU_FW = r'fw_ncpu.bin'
|
||||
MODEL_PATH = r'fire_detection_520.nef'
|
||||
|
||||
try:
|
||||
# Initialize inference engine
|
||||
print("Initializing MultiDongle...")
|
||||
multidongle = MultiDongle(PORT_IDS, SCPU_FW, NCPU_FW, MODEL_PATH, upload_fw=True)
|
||||
multidongle.initialize()
|
||||
multidongle.start()
|
||||
|
||||
# Run using the new runner class
|
||||
print("Starting webcam inference...")
|
||||
runner = WebcamInferenceRunner(multidongle, 'BGR565')
|
||||
runner.run()
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
finally:
|
||||
if 'multidongle' in locals():
|
||||
multidongle.stop()
|
||||
@ -1,563 +0,0 @@
|
||||
from typing import List, Dict, Any, Optional, Callable, Union
|
||||
import threading
|
||||
import queue
|
||||
import time
|
||||
import traceback
|
||||
from dataclasses import dataclass
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import numpy as np
|
||||
|
||||
from Multidongle import MultiDongle, PreProcessor, PostProcessor, DataProcessor
|
||||
|
||||
@dataclass
|
||||
class StageConfig:
|
||||
"""Configuration for a single pipeline stage"""
|
||||
stage_id: str
|
||||
port_ids: List[int]
|
||||
scpu_fw_path: str
|
||||
ncpu_fw_path: str
|
||||
model_path: str
|
||||
upload_fw: bool = False
|
||||
max_queue_size: int = 50
|
||||
# Inter-stage processing
|
||||
input_preprocessor: Optional[PreProcessor] = None # Before this stage
|
||||
output_postprocessor: Optional[PostProcessor] = None # After this stage
|
||||
# Stage-specific processing
|
||||
stage_preprocessor: Optional[PreProcessor] = None # MultiDongle preprocessor
|
||||
stage_postprocessor: Optional[PostProcessor] = None # MultiDongle postprocessor
|
||||
|
||||
@dataclass
|
||||
class PipelineData:
|
||||
"""Data structure flowing through pipeline"""
|
||||
data: Any # Main data (image, features, etc.)
|
||||
metadata: Dict[str, Any] # Additional info
|
||||
stage_results: Dict[str, Any] # Results from each stage
|
||||
pipeline_id: str # Unique identifier for this data flow
|
||||
timestamp: float
|
||||
|
||||
class PipelineStage:
|
||||
"""Single stage in the inference pipeline"""
|
||||
|
||||
def __init__(self, config: StageConfig):
|
||||
self.config = config
|
||||
self.stage_id = config.stage_id
|
||||
|
||||
# Initialize MultiDongle for this stage
|
||||
self.multidongle = MultiDongle(
|
||||
port_id=config.port_ids,
|
||||
scpu_fw_path=config.scpu_fw_path,
|
||||
ncpu_fw_path=config.ncpu_fw_path,
|
||||
model_path=config.model_path,
|
||||
upload_fw=config.upload_fw,
|
||||
preprocessor=config.stage_preprocessor,
|
||||
postprocessor=config.stage_postprocessor,
|
||||
max_queue_size=config.max_queue_size
|
||||
)
|
||||
|
||||
# Inter-stage processors
|
||||
self.input_preprocessor = config.input_preprocessor
|
||||
self.output_postprocessor = config.output_postprocessor
|
||||
|
||||
# Threading for this stage
|
||||
self.input_queue = queue.Queue(maxsize=config.max_queue_size)
|
||||
self.output_queue = queue.Queue(maxsize=config.max_queue_size)
|
||||
self.worker_thread = None
|
||||
self.running = False
|
||||
self._stop_event = threading.Event()
|
||||
|
||||
# Statistics
|
||||
self.processed_count = 0
|
||||
self.error_count = 0
|
||||
self.processing_times = []
|
||||
|
||||
def initialize(self):
|
||||
"""Initialize the stage"""
|
||||
print(f"[Stage {self.stage_id}] Initializing...")
|
||||
try:
|
||||
self.multidongle.initialize()
|
||||
self.multidongle.start()
|
||||
print(f"[Stage {self.stage_id}] Initialized successfully")
|
||||
except Exception as e:
|
||||
print(f"[Stage {self.stage_id}] Initialization failed: {e}")
|
||||
raise
|
||||
|
||||
def start(self):
|
||||
"""Start the stage worker thread"""
|
||||
if self.worker_thread and self.worker_thread.is_alive():
|
||||
return
|
||||
|
||||
self.running = True
|
||||
self._stop_event.clear()
|
||||
self.worker_thread = threading.Thread(target=self._worker_loop, daemon=True)
|
||||
self.worker_thread.start()
|
||||
print(f"[Stage {self.stage_id}] Worker thread started")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the stage gracefully"""
|
||||
print(f"[Stage {self.stage_id}] Stopping...")
|
||||
self.running = False
|
||||
self._stop_event.set()
|
||||
|
||||
# Put sentinel to unblock worker
|
||||
try:
|
||||
self.input_queue.put(None, timeout=1.0)
|
||||
except queue.Full:
|
||||
pass
|
||||
|
||||
# Wait for worker thread
|
||||
if self.worker_thread and self.worker_thread.is_alive():
|
||||
self.worker_thread.join(timeout=3.0)
|
||||
if self.worker_thread.is_alive():
|
||||
print(f"[Stage {self.stage_id}] Warning: Worker thread didn't stop cleanly")
|
||||
|
||||
# Stop MultiDongle
|
||||
self.multidongle.stop()
|
||||
print(f"[Stage {self.stage_id}] Stopped")
|
||||
|
||||
def _worker_loop(self):
|
||||
"""Main worker loop for processing data"""
|
||||
print(f"[Stage {self.stage_id}] Worker loop started")
|
||||
|
||||
while self.running and not self._stop_event.is_set():
|
||||
try:
|
||||
# Get input data
|
||||
try:
|
||||
pipeline_data = self.input_queue.get(timeout=0.1)
|
||||
if pipeline_data is None: # Sentinel value
|
||||
continue
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Process data through this stage
|
||||
processed_data = self._process_data(pipeline_data)
|
||||
|
||||
# Record processing time
|
||||
processing_time = time.time() - start_time
|
||||
self.processing_times.append(processing_time)
|
||||
if len(self.processing_times) > 1000: # Keep only recent times
|
||||
self.processing_times = self.processing_times[-500:]
|
||||
|
||||
self.processed_count += 1
|
||||
|
||||
# Put result to output queue
|
||||
try:
|
||||
self.output_queue.put(processed_data, block=False)
|
||||
except queue.Full:
|
||||
# Drop oldest and add new
|
||||
try:
|
||||
self.output_queue.get_nowait()
|
||||
self.output_queue.put(processed_data, block=False)
|
||||
except queue.Empty:
|
||||
pass
|
||||
|
||||
except Exception as e:
|
||||
self.error_count += 1
|
||||
print(f"[Stage {self.stage_id}] Processing error: {e}")
|
||||
traceback.print_exc()
|
||||
|
||||
print(f"[Stage {self.stage_id}] Worker loop stopped")
|
||||
|
||||
def _process_data(self, pipeline_data: PipelineData) -> PipelineData:
|
||||
"""Process data through this stage"""
|
||||
try:
|
||||
current_data = pipeline_data.data
|
||||
|
||||
# Debug: Print data info
|
||||
if isinstance(current_data, np.ndarray):
|
||||
print(f"[Stage {self.stage_id}] Input data: shape={current_data.shape}, dtype={current_data.dtype}")
|
||||
|
||||
# Step 1: Input preprocessing (inter-stage)
|
||||
if self.input_preprocessor:
|
||||
if isinstance(current_data, np.ndarray):
|
||||
print(f"[Stage {self.stage_id}] Applying input preprocessor...")
|
||||
current_data = self.input_preprocessor.process(
|
||||
current_data,
|
||||
self.multidongle.model_input_shape,
|
||||
'BGR565' # Default format
|
||||
)
|
||||
print(f"[Stage {self.stage_id}] After input preprocess: shape={current_data.shape}, dtype={current_data.dtype}")
|
||||
|
||||
# Step 2: Always preprocess image data for MultiDongle
|
||||
processed_data = None
|
||||
if isinstance(current_data, np.ndarray) and len(current_data.shape) == 3:
|
||||
# Always use MultiDongle's preprocess_frame to ensure correct format
|
||||
print(f"[Stage {self.stage_id}] Preprocessing frame for MultiDongle...")
|
||||
processed_data = self.multidongle.preprocess_frame(current_data, 'BGR565')
|
||||
print(f"[Stage {self.stage_id}] After MultiDongle preprocess: shape={processed_data.shape}, dtype={processed_data.dtype}")
|
||||
|
||||
# Validate processed data
|
||||
if processed_data is None:
|
||||
raise ValueError("MultiDongle preprocess_frame returned None")
|
||||
if not isinstance(processed_data, np.ndarray):
|
||||
raise ValueError(f"MultiDongle preprocess_frame returned {type(processed_data)}, expected np.ndarray")
|
||||
|
||||
elif isinstance(current_data, dict) and 'raw_output' in current_data:
|
||||
# This is result from previous stage, not suitable for direct inference
|
||||
print(f"[Stage {self.stage_id}] Warning: Received processed result instead of image data")
|
||||
processed_data = current_data
|
||||
else:
|
||||
print(f"[Stage {self.stage_id}] Warning: Unexpected data type: {type(current_data)}")
|
||||
processed_data = current_data
|
||||
|
||||
# Step 3: MultiDongle inference
|
||||
if isinstance(processed_data, np.ndarray):
|
||||
print(f"[Stage {self.stage_id}] Sending to MultiDongle: shape={processed_data.shape}, dtype={processed_data.dtype}")
|
||||
self.multidongle.put_input(processed_data, 'BGR565')
|
||||
|
||||
# Get inference result with timeout
|
||||
inference_result = {}
|
||||
timeout_start = time.time()
|
||||
while time.time() - timeout_start < 5.0: # 5 second timeout
|
||||
result = self.multidongle.get_latest_inference_result(timeout=0.1)
|
||||
if result:
|
||||
inference_result = result
|
||||
break
|
||||
time.sleep(0.01)
|
||||
|
||||
if not inference_result:
|
||||
print(f"[Stage {self.stage_id}] Warning: No inference result received")
|
||||
inference_result = {'probability': 0.0, 'result': 'No Result'}
|
||||
|
||||
# Step 3: Output postprocessing (inter-stage)
|
||||
processed_result = inference_result
|
||||
if self.output_postprocessor:
|
||||
if 'raw_output' in inference_result:
|
||||
processed_result = self.output_postprocessor.process(
|
||||
inference_result['raw_output']
|
||||
)
|
||||
# Merge with original result
|
||||
processed_result.update(inference_result)
|
||||
|
||||
# Step 4: Update pipeline data
|
||||
pipeline_data.stage_results[self.stage_id] = processed_result
|
||||
pipeline_data.data = processed_result # Pass result as data to next stage
|
||||
pipeline_data.metadata[f'{self.stage_id}_timestamp'] = time.time()
|
||||
|
||||
return pipeline_data
|
||||
|
||||
except Exception as e:
|
||||
print(f"[Stage {self.stage_id}] Data processing error: {e}")
|
||||
# Return data with error info
|
||||
pipeline_data.stage_results[self.stage_id] = {
|
||||
'error': str(e),
|
||||
'probability': 0.0,
|
||||
'result': 'Processing Error'
|
||||
}
|
||||
return pipeline_data
|
||||
|
||||
def put_data(self, data: PipelineData, timeout: float = 1.0) -> bool:
|
||||
"""Put data into this stage's input queue"""
|
||||
try:
|
||||
self.input_queue.put(data, timeout=timeout)
|
||||
return True
|
||||
except queue.Full:
|
||||
return False
|
||||
|
||||
def get_result(self, timeout: float = 0.1) -> Optional[PipelineData]:
|
||||
"""Get result from this stage's output queue"""
|
||||
try:
|
||||
return self.output_queue.get(timeout=timeout)
|
||||
except queue.Empty:
|
||||
return None
|
||||
|
||||
def get_statistics(self) -> Dict[str, Any]:
|
||||
"""Get stage statistics"""
|
||||
avg_processing_time = (
|
||||
sum(self.processing_times) / len(self.processing_times)
|
||||
if self.processing_times else 0.0
|
||||
)
|
||||
|
||||
multidongle_stats = self.multidongle.get_statistics()
|
||||
|
||||
return {
|
||||
'stage_id': self.stage_id,
|
||||
'processed_count': self.processed_count,
|
||||
'error_count': self.error_count,
|
||||
'avg_processing_time': avg_processing_time,
|
||||
'input_queue_size': self.input_queue.qsize(),
|
||||
'output_queue_size': self.output_queue.qsize(),
|
||||
'multidongle_stats': multidongle_stats
|
||||
}
|
||||
|
||||
class InferencePipeline:
|
||||
"""Multi-stage inference pipeline"""
|
||||
|
||||
def __init__(self, stage_configs: List[StageConfig],
|
||||
final_postprocessor: Optional[PostProcessor] = None,
|
||||
pipeline_name: str = "InferencePipeline"):
|
||||
"""
|
||||
Initialize inference pipeline
|
||||
:param stage_configs: List of stage configurations
|
||||
:param final_postprocessor: Final postprocessor after all stages
|
||||
:param pipeline_name: Name for this pipeline instance
|
||||
"""
|
||||
self.pipeline_name = pipeline_name
|
||||
self.stage_configs = stage_configs
|
||||
self.final_postprocessor = final_postprocessor
|
||||
|
||||
# Create stages
|
||||
self.stages: List[PipelineStage] = []
|
||||
for config in stage_configs:
|
||||
stage = PipelineStage(config)
|
||||
self.stages.append(stage)
|
||||
|
||||
# Pipeline coordinator
|
||||
self.coordinator_thread = None
|
||||
self.running = False
|
||||
self._stop_event = threading.Event()
|
||||
|
||||
# Input/Output queues for the entire pipeline
|
||||
self.pipeline_input_queue = queue.Queue(maxsize=100)
|
||||
self.pipeline_output_queue = queue.Queue(maxsize=100)
|
||||
|
||||
# Callbacks
|
||||
self.result_callback = None
|
||||
self.error_callback = None
|
||||
self.stats_callback = None
|
||||
|
||||
# Statistics
|
||||
self.pipeline_counter = 0
|
||||
self.completed_counter = 0
|
||||
self.error_counter = 0
|
||||
|
||||
def initialize(self):
|
||||
"""Initialize all stages"""
|
||||
print(f"[{self.pipeline_name}] Initializing pipeline with {len(self.stages)} stages...")
|
||||
|
||||
for i, stage in enumerate(self.stages):
|
||||
try:
|
||||
stage.initialize()
|
||||
print(f"[{self.pipeline_name}] Stage {i+1}/{len(self.stages)} initialized")
|
||||
except Exception as e:
|
||||
print(f"[{self.pipeline_name}] Failed to initialize stage {stage.stage_id}: {e}")
|
||||
# Cleanup already initialized stages
|
||||
for j in range(i):
|
||||
self.stages[j].stop()
|
||||
raise
|
||||
|
||||
print(f"[{self.pipeline_name}] All stages initialized successfully")
|
||||
|
||||
def start(self):
|
||||
"""Start the pipeline"""
|
||||
print(f"[{self.pipeline_name}] Starting pipeline...")
|
||||
|
||||
# Start all stages
|
||||
for stage in self.stages:
|
||||
stage.start()
|
||||
|
||||
# Start coordinator
|
||||
self.running = True
|
||||
self._stop_event.clear()
|
||||
self.coordinator_thread = threading.Thread(target=self._coordinator_loop, daemon=True)
|
||||
self.coordinator_thread.start()
|
||||
|
||||
print(f"[{self.pipeline_name}] Pipeline started successfully")
|
||||
|
||||
def stop(self):
|
||||
"""Stop the pipeline gracefully"""
|
||||
print(f"[{self.pipeline_name}] Stopping pipeline...")
|
||||
|
||||
self.running = False
|
||||
self._stop_event.set()
|
||||
|
||||
# Stop coordinator
|
||||
if self.coordinator_thread and self.coordinator_thread.is_alive():
|
||||
try:
|
||||
self.pipeline_input_queue.put(None, timeout=1.0)
|
||||
except queue.Full:
|
||||
pass
|
||||
self.coordinator_thread.join(timeout=3.0)
|
||||
|
||||
# Stop all stages
|
||||
for stage in self.stages:
|
||||
stage.stop()
|
||||
|
||||
print(f"[{self.pipeline_name}] Pipeline stopped")
|
||||
|
||||
def _coordinator_loop(self):
|
||||
"""Coordinate data flow between stages"""
|
||||
print(f"[{self.pipeline_name}] Coordinator started")
|
||||
|
||||
while self.running and not self._stop_event.is_set():
|
||||
try:
|
||||
# Get input data
|
||||
try:
|
||||
input_data = self.pipeline_input_queue.get(timeout=0.1)
|
||||
if input_data is None: # Sentinel
|
||||
continue
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
# Create pipeline data
|
||||
pipeline_data = PipelineData(
|
||||
data=input_data,
|
||||
metadata={'start_timestamp': time.time()},
|
||||
stage_results={},
|
||||
pipeline_id=f"pipeline_{self.pipeline_counter}",
|
||||
timestamp=time.time()
|
||||
)
|
||||
self.pipeline_counter += 1
|
||||
|
||||
# Process through each stage
|
||||
current_data = pipeline_data
|
||||
success = True
|
||||
|
||||
for i, stage in enumerate(self.stages):
|
||||
# Send data to stage
|
||||
if not stage.put_data(current_data, timeout=1.0):
|
||||
print(f"[{self.pipeline_name}] Stage {stage.stage_id} input queue full, dropping data")
|
||||
success = False
|
||||
break
|
||||
|
||||
# Get result from stage
|
||||
result_data = None
|
||||
timeout_start = time.time()
|
||||
while time.time() - timeout_start < 10.0: # 10 second timeout per stage
|
||||
result_data = stage.get_result(timeout=0.1)
|
||||
if result_data:
|
||||
break
|
||||
if self._stop_event.is_set():
|
||||
break
|
||||
time.sleep(0.01)
|
||||
|
||||
if not result_data:
|
||||
print(f"[{self.pipeline_name}] Stage {stage.stage_id} timeout")
|
||||
success = False
|
||||
break
|
||||
|
||||
current_data = result_data
|
||||
|
||||
# Final postprocessing
|
||||
if success and self.final_postprocessor:
|
||||
try:
|
||||
if isinstance(current_data.data, dict) and 'raw_output' in current_data.data:
|
||||
final_result = self.final_postprocessor.process(current_data.data['raw_output'])
|
||||
current_data.stage_results['final'] = final_result
|
||||
current_data.data = final_result
|
||||
except Exception as e:
|
||||
print(f"[{self.pipeline_name}] Final postprocessing error: {e}")
|
||||
|
||||
# Output result
|
||||
if success:
|
||||
current_data.metadata['end_timestamp'] = time.time()
|
||||
current_data.metadata['total_processing_time'] = (
|
||||
current_data.metadata['end_timestamp'] -
|
||||
current_data.metadata['start_timestamp']
|
||||
)
|
||||
|
||||
try:
|
||||
self.pipeline_output_queue.put(current_data, block=False)
|
||||
self.completed_counter += 1
|
||||
|
||||
# Call result callback
|
||||
if self.result_callback:
|
||||
self.result_callback(current_data)
|
||||
|
||||
except queue.Full:
|
||||
# Drop oldest and add new
|
||||
try:
|
||||
self.pipeline_output_queue.get_nowait()
|
||||
self.pipeline_output_queue.put(current_data, block=False)
|
||||
except queue.Empty:
|
||||
pass
|
||||
else:
|
||||
self.error_counter += 1
|
||||
if self.error_callback:
|
||||
self.error_callback(current_data)
|
||||
|
||||
except Exception as e:
|
||||
print(f"[{self.pipeline_name}] Coordinator error: {e}")
|
||||
traceback.print_exc()
|
||||
self.error_counter += 1
|
||||
|
||||
print(f"[{self.pipeline_name}] Coordinator stopped")
|
||||
|
||||
def put_data(self, data: Any, timeout: float = 1.0) -> bool:
|
||||
"""Put data into pipeline"""
|
||||
try:
|
||||
self.pipeline_input_queue.put(data, timeout=timeout)
|
||||
return True
|
||||
except queue.Full:
|
||||
return False
|
||||
|
||||
def get_result(self, timeout: float = 0.1) -> Optional[PipelineData]:
|
||||
"""Get result from pipeline"""
|
||||
try:
|
||||
return self.pipeline_output_queue.get(timeout=timeout)
|
||||
except queue.Empty:
|
||||
return None
|
||||
|
||||
def set_result_callback(self, callback: Callable[[PipelineData], None]):
|
||||
"""Set callback for successful results"""
|
||||
self.result_callback = callback
|
||||
|
||||
def set_error_callback(self, callback: Callable[[PipelineData], None]):
|
||||
"""Set callback for errors"""
|
||||
self.error_callback = callback
|
||||
|
||||
def set_stats_callback(self, callback: Callable[[Dict[str, Any]], None]):
|
||||
"""Set callback for statistics"""
|
||||
self.stats_callback = callback
|
||||
|
||||
def get_pipeline_statistics(self) -> Dict[str, Any]:
|
||||
"""Get comprehensive pipeline statistics"""
|
||||
stage_stats = []
|
||||
for stage in self.stages:
|
||||
stage_stats.append(stage.get_statistics())
|
||||
|
||||
return {
|
||||
'pipeline_name': self.pipeline_name,
|
||||
'total_stages': len(self.stages),
|
||||
'pipeline_input_submitted': self.pipeline_counter,
|
||||
'pipeline_completed': self.completed_counter,
|
||||
'pipeline_errors': self.error_counter,
|
||||
'pipeline_input_queue_size': self.pipeline_input_queue.qsize(),
|
||||
'pipeline_output_queue_size': self.pipeline_output_queue.qsize(),
|
||||
'stage_statistics': stage_stats
|
||||
}
|
||||
|
||||
def start_stats_reporting(self, interval: float = 5.0):
|
||||
"""Start periodic statistics reporting"""
|
||||
def stats_loop():
|
||||
while self.running:
|
||||
if self.stats_callback:
|
||||
stats = self.get_pipeline_statistics()
|
||||
self.stats_callback(stats)
|
||||
time.sleep(interval)
|
||||
|
||||
stats_thread = threading.Thread(target=stats_loop, daemon=True)
|
||||
stats_thread.start()
|
||||
|
||||
# Utility functions for common inter-stage processing
|
||||
def create_feature_extractor_preprocessor() -> PreProcessor:
|
||||
"""Create preprocessor for feature extraction stage"""
|
||||
def extract_features(frame, target_size):
|
||||
# Example: extract edges, keypoints, etc.
|
||||
import cv2
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
edges = cv2.Canny(gray, 50, 150)
|
||||
return cv2.resize(edges, target_size)
|
||||
|
||||
return PreProcessor(resize_fn=extract_features)
|
||||
|
||||
def create_result_aggregator_postprocessor() -> PostProcessor:
|
||||
"""Create postprocessor for aggregating multiple stage results"""
|
||||
def aggregate_results(raw_output, **kwargs):
|
||||
# Example: combine results from multiple stages
|
||||
if isinstance(raw_output, dict):
|
||||
# If raw_output is already processed results
|
||||
return raw_output
|
||||
|
||||
# Standard processing
|
||||
if raw_output.size > 0:
|
||||
probability = float(raw_output[0])
|
||||
return {
|
||||
'aggregated_probability': probability,
|
||||
'confidence': 'High' if probability > 0.8 else 'Medium' if probability > 0.5 else 'Low',
|
||||
'result': 'Detected' if probability > 0.5 else 'Not Detected'
|
||||
}
|
||||
return {'aggregated_probability': 0.0, 'confidence': 'Low', 'result': 'Not Detected'}
|
||||
|
||||
return PostProcessor(process_fn=aggregate_results)
|
||||
@ -1,505 +0,0 @@
|
||||
from typing import Union, Tuple
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import time
|
||||
import threading
|
||||
import queue
|
||||
import numpy as np
|
||||
import kp
|
||||
import cv2
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Callable, Optional, Any, Dict
|
||||
|
||||
|
||||
class PreProcessor(DataProcessor): # type: ignore
|
||||
def __init__(self, resize_fn: Optional[Callable] = None,
|
||||
format_convert_fn: Optional[Callable] = None):
|
||||
self.resize_fn = resize_fn or self._default_resize
|
||||
self.format_convert_fn = format_convert_fn or self._default_format_convert
|
||||
|
||||
def process(self, frame: np.ndarray, target_size: tuple, target_format: str) -> np.ndarray:
|
||||
"""Main processing pipeline"""
|
||||
resized = self.resize_fn(frame, target_size)
|
||||
return self.format_convert_fn(resized, target_format)
|
||||
|
||||
def _default_resize(self, frame: np.ndarray, target_size: tuple) -> np.ndarray:
|
||||
"""Default resize implementation"""
|
||||
return cv2.resize(frame, target_size)
|
||||
|
||||
def _default_format_convert(self, frame: np.ndarray, target_format: str) -> np.ndarray:
|
||||
"""Default format conversion"""
|
||||
if target_format == 'BGR565':
|
||||
return cv2.cvtColor(frame, cv2.COLOR_BGR2BGR565)
|
||||
elif target_format == 'RGB8888':
|
||||
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
|
||||
return frame
|
||||
|
||||
class MultiDongle:
|
||||
# Curently, only BGR565, RGB8888, YUYV, and RAW8 formats are supported
|
||||
_FORMAT_MAPPING = {
|
||||
'BGR565': kp.ImageFormat.KP_IMAGE_FORMAT_RGB565,
|
||||
'RGB8888': kp.ImageFormat.KP_IMAGE_FORMAT_RGBA8888,
|
||||
'YUYV': kp.ImageFormat.KP_IMAGE_FORMAT_YUYV,
|
||||
'RAW8': kp.ImageFormat.KP_IMAGE_FORMAT_RAW8,
|
||||
# 'YCBCR422_CRY1CBY0': kp.ImageFormat.KP_IMAGE_FORMAT_YCBCR422_CRY1CBY0,
|
||||
# 'YCBCR422_CBY1CRY0': kp.ImageFormat.KP_IMAGE_FORMAT_CBY1CRY0,
|
||||
# 'YCBCR422_Y1CRY0CB': kp.ImageFormat.KP_IMAGE_FORMAT_Y1CRY0CB,
|
||||
# 'YCBCR422_Y1CBY0CR': kp.ImageFormat.KP_IMAGE_FORMAT_Y1CBY0CR,
|
||||
# 'YCBCR422_CRY0CBY1': kp.ImageFormat.KP_IMAGE_FORMAT_CRY0CBY1,
|
||||
# 'YCBCR422_CBY0CRY1': kp.ImageFormat.KP_IMAGE_FORMAT_CBY0CRY1,
|
||||
# 'YCBCR422_Y0CRY1CB': kp.ImageFormat.KP_IMAGE_FORMAT_Y0CRY1CB,
|
||||
# 'YCBCR422_Y0CBY1CR': kp.ImageFormat.KP_IMAGE_FORMAT_Y0CBY1CR,
|
||||
}
|
||||
|
||||
def __init__(self, port_id: list, scpu_fw_path: str, ncpu_fw_path: str, model_path: str, upload_fw: bool = False):
|
||||
"""
|
||||
Initialize the MultiDongle class.
|
||||
:param port_id: List of USB port IDs for the same layer's devices.
|
||||
:param scpu_fw_path: Path to the SCPU firmware file.
|
||||
:param ncpu_fw_path: Path to the NCPU firmware file.
|
||||
:param model_path: Path to the model file.
|
||||
:param upload_fw: Flag to indicate whether to upload firmware.
|
||||
"""
|
||||
self.port_id = port_id
|
||||
self.upload_fw = upload_fw
|
||||
|
||||
# Check if the firmware is needed
|
||||
if self.upload_fw:
|
||||
self.scpu_fw_path = scpu_fw_path
|
||||
self.ncpu_fw_path = ncpu_fw_path
|
||||
|
||||
self.model_path = model_path
|
||||
self.device_group = None
|
||||
|
||||
# generic_inference_input_descriptor will be prepared in initialize
|
||||
self.model_nef_descriptor = None
|
||||
self.generic_inference_input_descriptor = None
|
||||
# Queues for data
|
||||
# Input queue for images to be sent
|
||||
self._input_queue = queue.Queue()
|
||||
# Output queue for received results
|
||||
self._output_queue = queue.Queue()
|
||||
|
||||
# Threading attributes
|
||||
self._send_thread = None
|
||||
self._receive_thread = None
|
||||
self._stop_event = threading.Event() # Event to signal threads to stop
|
||||
|
||||
self._inference_counter = 0
|
||||
|
||||
def initialize(self):
|
||||
"""
|
||||
Connect devices, upload firmware (if upload_fw is True), and upload model.
|
||||
Must be called before start().
|
||||
"""
|
||||
# Connect device and assign to self.device_group
|
||||
try:
|
||||
print('[Connect Device]')
|
||||
self.device_group = kp.core.connect_devices(usb_port_ids=self.port_id)
|
||||
print(' - Success')
|
||||
except kp.ApiKPException as exception:
|
||||
print('Error: connect device fail, port ID = \'{}\', error msg: [{}]'.format(self.port_id, str(exception)))
|
||||
sys.exit(1)
|
||||
|
||||
# setting timeout of the usb communication with the device
|
||||
# print('[Set Device Timeout]')
|
||||
# kp.core.set_timeout(device_group=self.device_group, milliseconds=5000)
|
||||
# print(' - Success')
|
||||
|
||||
if self.upload_fw:
|
||||
try:
|
||||
print('[Upload Firmware]')
|
||||
kp.core.load_firmware_from_file(device_group=self.device_group,
|
||||
scpu_fw_path=self.scpu_fw_path,
|
||||
ncpu_fw_path=self.ncpu_fw_path)
|
||||
print(' - Success')
|
||||
except kp.ApiKPException as exception:
|
||||
print('Error: upload firmware failed, error = \'{}\''.format(str(exception)))
|
||||
sys.exit(1)
|
||||
|
||||
# upload model to device
|
||||
try:
|
||||
print('[Upload Model]')
|
||||
self.model_nef_descriptor = kp.core.load_model_from_file(device_group=self.device_group,
|
||||
file_path=self.model_path)
|
||||
print(' - Success')
|
||||
except kp.ApiKPException as exception:
|
||||
print('Error: upload model failed, error = \'{}\''.format(str(exception)))
|
||||
sys.exit(1)
|
||||
|
||||
# Extract model input dimensions automatically from model metadata
|
||||
if self.model_nef_descriptor and self.model_nef_descriptor.models:
|
||||
model = self.model_nef_descriptor.models[0]
|
||||
if hasattr(model, 'input_nodes') and model.input_nodes:
|
||||
input_node = model.input_nodes[0]
|
||||
# From your JSON: "shape_npu": [1, 3, 128, 128] -> (width, height)
|
||||
shape = input_node.tensor_shape_info.data.shape_npu
|
||||
self.model_input_shape = (shape[3], shape[2]) # (width, height)
|
||||
self.model_input_channels = shape[1] # 3 for RGB
|
||||
print(f"Model input shape detected: {self.model_input_shape}, channels: {self.model_input_channels}")
|
||||
else:
|
||||
self.model_input_shape = (128, 128) # fallback
|
||||
self.model_input_channels = 3
|
||||
print("Using default input shape (128, 128)")
|
||||
else:
|
||||
self.model_input_shape = (128, 128)
|
||||
self.model_input_channels = 3
|
||||
print("Model info not available, using default shape")
|
||||
|
||||
# Prepare generic inference input descriptor after model is loaded
|
||||
if self.model_nef_descriptor:
|
||||
self.generic_inference_input_descriptor = kp.GenericImageInferenceDescriptor(
|
||||
model_id=self.model_nef_descriptor.models[0].id,
|
||||
)
|
||||
else:
|
||||
print("Warning: Could not get generic inference input descriptor from model.")
|
||||
self.generic_inference_input_descriptor = None
|
||||
|
||||
def preprocess_frame(self, frame: np.ndarray, target_format: str = 'BGR565') -> np.ndarray:
|
||||
"""
|
||||
Preprocess frame for inference
|
||||
"""
|
||||
resized_frame = cv2.resize(frame, self.model_input_shape)
|
||||
|
||||
if target_format == 'BGR565':
|
||||
return cv2.cvtColor(resized_frame, cv2.COLOR_BGR2BGR565)
|
||||
elif target_format == 'RGB8888':
|
||||
return cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGBA)
|
||||
elif target_format == 'YUYV':
|
||||
return cv2.cvtColor(resized_frame, cv2.COLOR_BGR2YUV_YUYV)
|
||||
else:
|
||||
return resized_frame # RAW8 or other formats
|
||||
|
||||
def get_latest_inference_result(self, timeout: float = 0.01) -> Tuple[float, str]:
|
||||
"""
|
||||
Get the latest inference result
|
||||
Returns: (probability, result_string) or (None, None) if no result
|
||||
"""
|
||||
output_descriptor = self.get_output(timeout=timeout)
|
||||
if not output_descriptor:
|
||||
return None, None
|
||||
|
||||
# Process the output descriptor
|
||||
if hasattr(output_descriptor, 'header') and \
|
||||
hasattr(output_descriptor.header, 'num_output_node') and \
|
||||
hasattr(output_descriptor.header, 'inference_number'):
|
||||
|
||||
inf_node_output_list = []
|
||||
retrieval_successful = True
|
||||
|
||||
for node_idx in range(output_descriptor.header.num_output_node):
|
||||
try:
|
||||
inference_float_node_output = kp.inference.generic_inference_retrieve_float_node(
|
||||
node_idx=node_idx,
|
||||
generic_raw_result=output_descriptor,
|
||||
channels_ordering=kp.ChannelOrdering.KP_CHANNEL_ORDERING_CHW
|
||||
)
|
||||
inf_node_output_list.append(inference_float_node_output.ndarray.copy())
|
||||
except kp.ApiKPException as e:
|
||||
retrieval_successful = False
|
||||
break
|
||||
except Exception as e:
|
||||
retrieval_successful = False
|
||||
break
|
||||
|
||||
if retrieval_successful and inf_node_output_list:
|
||||
# Process output nodes
|
||||
if output_descriptor.header.num_output_node == 1:
|
||||
raw_output_array = inf_node_output_list[0].flatten()
|
||||
else:
|
||||
concatenated_outputs = [arr.flatten() for arr in inf_node_output_list]
|
||||
raw_output_array = np.concatenate(concatenated_outputs) if concatenated_outputs else np.array([])
|
||||
|
||||
if raw_output_array.size > 0:
|
||||
probability = postprocess(raw_output_array)
|
||||
result_str = "Fire" if probability > 0.5 else "No Fire"
|
||||
return probability, result_str
|
||||
|
||||
return None, None
|
||||
|
||||
|
||||
# Modified _send_thread_func to get data from input queue
|
||||
def _send_thread_func(self):
|
||||
"""Internal function run by the send thread, gets images from input queue."""
|
||||
print("Send thread started.")
|
||||
while not self._stop_event.is_set():
|
||||
if self.generic_inference_input_descriptor is None:
|
||||
# Wait for descriptor to be ready or stop
|
||||
self._stop_event.wait(0.1) # Avoid busy waiting
|
||||
continue
|
||||
|
||||
try:
|
||||
# Get image and format from the input queue
|
||||
# Blocks until an item is available or stop event is set/timeout occurs
|
||||
try:
|
||||
# Use get with timeout or check stop event in a loop
|
||||
# This pattern allows thread to check stop event while waiting on queue
|
||||
item = self._input_queue.get(block=True, timeout=0.1)
|
||||
# Check if this is our sentinel value
|
||||
if item is None:
|
||||
continue
|
||||
|
||||
# Now safely unpack the tuple
|
||||
image_data, image_format_enum = item
|
||||
except queue.Empty:
|
||||
# If queue is empty after timeout, check stop event and continue loop
|
||||
continue
|
||||
|
||||
# Configure and send the image
|
||||
self._inference_counter += 1 # Increment counter for each image
|
||||
self.generic_inference_input_descriptor.inference_number = self._inference_counter
|
||||
self.generic_inference_input_descriptor.input_node_image_list = [kp.GenericInputNodeImage(
|
||||
image=image_data,
|
||||
image_format=image_format_enum, # Use the format from the queue
|
||||
resize_mode=kp.ResizeMode.KP_RESIZE_ENABLE,
|
||||
padding_mode=kp.PaddingMode.KP_PADDING_CORNER,
|
||||
normalize_mode=kp.NormalizeMode.KP_NORMALIZE_KNERON
|
||||
)]
|
||||
|
||||
kp.inference.generic_image_inference_send(device_group=self.device_group,
|
||||
generic_inference_input_descriptor=self.generic_inference_input_descriptor)
|
||||
# print("Image sent.") # Optional: add log
|
||||
# No need for sleep here usually, as queue.get is blocking
|
||||
except kp.ApiKPException as exception:
|
||||
print(f' - Error in send thread: inference send failed, error = {exception}')
|
||||
self._stop_event.set() # Signal other thread to stop
|
||||
except Exception as e:
|
||||
print(f' - Unexpected error in send thread: {e}')
|
||||
self._stop_event.set()
|
||||
|
||||
print("Send thread stopped.")
|
||||
|
||||
# _receive_thread_func remains the same
|
||||
def _receive_thread_func(self):
|
||||
"""Internal function run by the receive thread, puts results into output queue."""
|
||||
print("Receive thread started.")
|
||||
while not self._stop_event.is_set():
|
||||
try:
|
||||
generic_inference_output_descriptor = kp.inference.generic_image_inference_receive(device_group=self.device_group)
|
||||
self._output_queue.put(generic_inference_output_descriptor)
|
||||
except kp.ApiKPException as exception:
|
||||
if not self._stop_event.is_set(): # Avoid printing error if we are already stopping
|
||||
print(f' - Error in receive thread: inference receive failed, error = {exception}')
|
||||
self._stop_event.set()
|
||||
except Exception as e:
|
||||
print(f' - Unexpected error in receive thread: {e}')
|
||||
self._stop_event.set()
|
||||
|
||||
print("Receive thread stopped.")
|
||||
|
||||
def start(self):
|
||||
"""
|
||||
Start the send and receive threads.
|
||||
Must be called after initialize().
|
||||
"""
|
||||
if self.device_group is None:
|
||||
raise RuntimeError("MultiDongle not initialized. Call initialize() first.")
|
||||
|
||||
if self._send_thread is None or not self._send_thread.is_alive():
|
||||
self._stop_event.clear() # Clear stop event for a new start
|
||||
self._send_thread = threading.Thread(target=self._send_thread_func, daemon=True)
|
||||
self._send_thread.start()
|
||||
print("Send thread started.")
|
||||
|
||||
if self._receive_thread is None or not self._receive_thread.is_alive():
|
||||
self._receive_thread = threading.Thread(target=self._receive_thread_func, daemon=True)
|
||||
self._receive_thread.start()
|
||||
print("Receive thread started.")
|
||||
|
||||
def stop(self):
|
||||
"""Improved stop method with better cleanup"""
|
||||
if self._stop_event.is_set():
|
||||
return # Already stopping
|
||||
|
||||
print("Stopping threads...")
|
||||
self._stop_event.set()
|
||||
|
||||
# Clear queues to unblock threads
|
||||
while not self._input_queue.empty():
|
||||
try:
|
||||
self._input_queue.get_nowait()
|
||||
except queue.Empty:
|
||||
break
|
||||
|
||||
# Signal send thread to wake up
|
||||
self._input_queue.put(None)
|
||||
|
||||
# Join threads with timeout
|
||||
for thread, name in [(self._send_thread, "Send"), (self._receive_thread, "Receive")]:
|
||||
if thread and thread.is_alive():
|
||||
thread.join(timeout=2.0)
|
||||
if thread.is_alive():
|
||||
print(f"Warning: {name} thread didn't stop cleanly")
|
||||
|
||||
def put_input(self, image: Union[str, np.ndarray], format: str, target_size: Tuple[int, int] = None):
|
||||
"""
|
||||
Put an image into the input queue with flexible preprocessing
|
||||
"""
|
||||
if isinstance(image, str):
|
||||
image_data = cv2.imread(image)
|
||||
if image_data is None:
|
||||
raise FileNotFoundError(f"Image file not found at {image}")
|
||||
if target_size:
|
||||
image_data = cv2.resize(image_data, target_size)
|
||||
elif isinstance(image, np.ndarray):
|
||||
# Don't modify original array, make copy if needed
|
||||
image_data = image.copy() if target_size is None else cv2.resize(image, target_size)
|
||||
else:
|
||||
raise ValueError("Image must be a file path (str) or a numpy array (ndarray).")
|
||||
|
||||
if format in self._FORMAT_MAPPING:
|
||||
image_format_enum = self._FORMAT_MAPPING[format]
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: {format}")
|
||||
|
||||
self._input_queue.put((image_data, image_format_enum))
|
||||
|
||||
def get_output(self, timeout: float = None):
|
||||
"""
|
||||
Get the next received data from the output queue.
|
||||
This method is non-blocking by default unless a timeout is specified.
|
||||
:param timeout: Time in seconds to wait for data. If None, it's non-blocking.
|
||||
:return: Received data (e.g., kp.GenericInferenceOutputDescriptor) or None if no data available within timeout.
|
||||
"""
|
||||
try:
|
||||
return self._output_queue.get(block=timeout is not None, timeout=timeout)
|
||||
except queue.Empty:
|
||||
return None
|
||||
|
||||
def __del__(self):
|
||||
"""Ensure resources are released when the object is garbage collected."""
|
||||
self.stop()
|
||||
if self.device_group:
|
||||
try:
|
||||
kp.core.disconnect_devices(device_group=self.device_group)
|
||||
print("Device group disconnected in destructor.")
|
||||
except Exception as e:
|
||||
print(f"Error disconnecting device group in destructor: {e}")
|
||||
|
||||
def postprocess(raw_model_output: list) -> float:
|
||||
"""
|
||||
Post-processes the raw model output.
|
||||
Assumes the model output is a list/array where the first element is the desired probability.
|
||||
"""
|
||||
if raw_model_output and len(raw_model_output) > 0:
|
||||
probability = raw_model_output[0]
|
||||
return float(probability)
|
||||
return 0.0 # Default or error value
|
||||
|
||||
class WebcamInferenceRunner:
|
||||
def __init__(self, multidongle: MultiDongle, image_format: str = 'BGR565'):
|
||||
self.multidongle = multidongle
|
||||
self.image_format = image_format
|
||||
self.latest_probability = 0.0
|
||||
self.result_str = "No Fire"
|
||||
|
||||
# Statistics tracking
|
||||
self.processed_inference_count = 0
|
||||
self.inference_fps_start_time = None
|
||||
self.display_fps_start_time = None
|
||||
self.display_frame_counter = 0
|
||||
|
||||
def run(self, camera_id: int = 0):
|
||||
cap = cv2.VideoCapture(camera_id)
|
||||
if not cap.isOpened():
|
||||
raise RuntimeError("Cannot open webcam")
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# Track display FPS
|
||||
if self.display_fps_start_time is None:
|
||||
self.display_fps_start_time = time.time()
|
||||
self.display_frame_counter += 1
|
||||
|
||||
# Preprocess and send frame
|
||||
processed_frame = self.multidongle.preprocess_frame(frame, self.image_format)
|
||||
self.multidongle.put_input(processed_frame, self.image_format)
|
||||
|
||||
# Get inference result
|
||||
prob, result = self.multidongle.get_latest_inference_result()
|
||||
if prob is not None:
|
||||
# Track inference FPS
|
||||
if self.inference_fps_start_time is None:
|
||||
self.inference_fps_start_time = time.time()
|
||||
self.processed_inference_count += 1
|
||||
|
||||
self.latest_probability = prob
|
||||
self.result_str = result
|
||||
|
||||
# Display frame with results
|
||||
self._display_results(frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
finally:
|
||||
# self._print_statistics()
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
def _display_results(self, frame):
|
||||
display_frame = frame.copy()
|
||||
text_color = (0, 255, 0) if "Fire" in self.result_str else (0, 0, 255)
|
||||
|
||||
# Display inference result
|
||||
cv2.putText(display_frame, f"{self.result_str} (Prob: {self.latest_probability:.2f})",
|
||||
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
|
||||
|
||||
# Calculate and display inference FPS
|
||||
if self.inference_fps_start_time and self.processed_inference_count > 0:
|
||||
elapsed_time = time.time() - self.inference_fps_start_time
|
||||
if elapsed_time > 0:
|
||||
inference_fps = self.processed_inference_count / elapsed_time
|
||||
cv2.putText(display_frame, f"Inference FPS: {inference_fps:.2f}",
|
||||
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2)
|
||||
|
||||
cv2.imshow('Fire Detection', display_frame)
|
||||
|
||||
# def _print_statistics(self):
|
||||
# """Print final statistics"""
|
||||
# print(f"\n--- Summary ---")
|
||||
# print(f"Total inferences processed: {self.processed_inference_count}")
|
||||
|
||||
# if self.inference_fps_start_time and self.processed_inference_count > 0:
|
||||
# elapsed = time.time() - self.inference_fps_start_time
|
||||
# if elapsed > 0:
|
||||
# avg_inference_fps = self.processed_inference_count / elapsed
|
||||
# print(f"Average Inference FPS: {avg_inference_fps:.2f}")
|
||||
|
||||
# if self.display_fps_start_time and self.display_frame_counter > 0:
|
||||
# elapsed = time.time() - self.display_fps_start_time
|
||||
# if elapsed > 0:
|
||||
# avg_display_fps = self.display_frame_counter / elapsed
|
||||
# print(f"Average Display FPS: {avg_display_fps:.2f}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
PORT_IDS = [28, 32]
|
||||
SCPU_FW = r'fw_scpu.bin'
|
||||
NCPU_FW = r'fw_ncpu.bin'
|
||||
MODEL_PATH = r'fire_detection_520.nef'
|
||||
|
||||
try:
|
||||
# Initialize inference engine
|
||||
print("Initializing MultiDongle...")
|
||||
multidongle = MultiDongle(PORT_IDS, SCPU_FW, NCPU_FW, MODEL_PATH, upload_fw=True)
|
||||
multidongle.initialize()
|
||||
multidongle.start()
|
||||
|
||||
# Run using the new runner class
|
||||
print("Starting webcam inference...")
|
||||
runner = WebcamInferenceRunner(multidongle, 'BGR565')
|
||||
runner.run()
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
finally:
|
||||
if 'multidongle' in locals():
|
||||
multidongle.stop()
|
||||
@ -1,407 +0,0 @@
|
||||
"""
|
||||
InferencePipeline Usage Examples
|
||||
================================
|
||||
|
||||
This file demonstrates how to use the InferencePipeline for various scenarios:
|
||||
1. Single stage (equivalent to MultiDongle)
|
||||
2. Two-stage cascade (detection -> classification)
|
||||
3. Multi-stage complex pipeline
|
||||
"""
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import time
|
||||
from InferencePipeline import (
|
||||
InferencePipeline, StageConfig,
|
||||
create_feature_extractor_preprocessor,
|
||||
create_result_aggregator_postprocessor
|
||||
)
|
||||
from Multidongle import PreProcessor, PostProcessor, WebcamSource, RTSPSource
|
||||
|
||||
# =============================================================================
|
||||
# Example 1: Single Stage Pipeline (Basic Usage)
|
||||
# =============================================================================
|
||||
|
||||
def example_single_stage():
|
||||
"""Single stage pipeline - equivalent to using MultiDongle directly"""
|
||||
print("=== Single Stage Pipeline Example ===")
|
||||
|
||||
# Create stage configuration
|
||||
stage_config = StageConfig(
|
||||
stage_id="fire_detection",
|
||||
port_ids=[28, 32],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="fire_detection_520.nef",
|
||||
upload_fw=True,
|
||||
max_queue_size=30
|
||||
# Note: No inter-stage processors needed for single stage
|
||||
# MultiDongle will handle internal preprocessing/postprocessing
|
||||
)
|
||||
|
||||
# Create pipeline with single stage
|
||||
pipeline = InferencePipeline(
|
||||
stage_configs=[stage_config],
|
||||
pipeline_name="SingleStageFireDetection"
|
||||
)
|
||||
|
||||
# Initialize and start
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
# Process some data
|
||||
data_source = WebcamSource(camera_id=0)
|
||||
data_source.start()
|
||||
|
||||
def handle_result(pipeline_data):
|
||||
result = pipeline_data.stage_results.get("fire_detection", {})
|
||||
print(f"Fire Detection: {result.get('result', 'Unknown')} "
|
||||
f"(Prob: {result.get('probability', 0.0):.3f})")
|
||||
|
||||
def handle_error(pipeline_data):
|
||||
print(f"❌ Error: {pipeline_data.stage_results}")
|
||||
|
||||
pipeline.set_result_callback(handle_result)
|
||||
pipeline.set_error_callback(handle_error)
|
||||
|
||||
try:
|
||||
print("🚀 Starting single stage pipeline...")
|
||||
for i in range(100): # Process 100 frames
|
||||
frame = data_source.get_frame()
|
||||
if frame is not None:
|
||||
success = pipeline.put_data(frame, timeout=1.0)
|
||||
if not success:
|
||||
print("Pipeline input queue full, dropping frame")
|
||||
time.sleep(0.1)
|
||||
except KeyboardInterrupt:
|
||||
print("\nStopping...")
|
||||
finally:
|
||||
data_source.stop()
|
||||
pipeline.stop()
|
||||
print("Single stage pipeline test completed")
|
||||
|
||||
# =============================================================================
|
||||
# Example 2: Two-Stage Cascade Pipeline
|
||||
# =============================================================================
|
||||
|
||||
def example_two_stage_cascade():
|
||||
"""Two-stage cascade: Object Detection -> Fire Classification"""
|
||||
print("=== Two-Stage Cascade Pipeline Example ===")
|
||||
|
||||
# Custom preprocessor for second stage
|
||||
def roi_extraction_preprocess(frame, target_size):
|
||||
"""Extract ROI from detection results and prepare for classification"""
|
||||
# This would normally extract bounding box from first stage results
|
||||
# For demo, we'll just do center crop
|
||||
h, w = frame.shape[:2] if len(frame.shape) == 3 else frame.shape
|
||||
center_x, center_y = w // 2, h // 2
|
||||
crop_size = min(w, h) // 2
|
||||
|
||||
x1 = max(0, center_x - crop_size // 2)
|
||||
y1 = max(0, center_y - crop_size // 2)
|
||||
x2 = min(w, center_x + crop_size // 2)
|
||||
y2 = min(h, center_y + crop_size // 2)
|
||||
|
||||
if len(frame.shape) == 3:
|
||||
cropped = frame[y1:y2, x1:x2]
|
||||
else:
|
||||
cropped = frame[y1:y2, x1:x2]
|
||||
|
||||
return cv2.resize(cropped, target_size)
|
||||
|
||||
# Custom postprocessor for combining results
|
||||
def combine_detection_classification(raw_output, **kwargs):
|
||||
"""Combine detection and classification results"""
|
||||
if raw_output.size > 0:
|
||||
classification_prob = float(raw_output[0])
|
||||
|
||||
# Get detection result from metadata (would be passed from first stage)
|
||||
detection_confidence = kwargs.get('detection_conf', 0.5)
|
||||
|
||||
# Combined confidence
|
||||
combined_prob = (classification_prob * 0.7) + (detection_confidence * 0.3)
|
||||
|
||||
return {
|
||||
'combined_probability': combined_prob,
|
||||
'classification_prob': classification_prob,
|
||||
'detection_conf': detection_confidence,
|
||||
'result': 'Fire Detected' if combined_prob > 0.6 else 'No Fire',
|
||||
'confidence': 'High' if combined_prob > 0.8 else 'Medium' if combined_prob > 0.5 else 'Low'
|
||||
}
|
||||
return {'combined_probability': 0.0, 'result': 'No Fire', 'confidence': 'Low'}
|
||||
|
||||
# Set up callbacks
|
||||
def handle_cascade_result(pipeline_data):
|
||||
"""Handle results from cascade pipeline"""
|
||||
detection_result = pipeline_data.stage_results.get("object_detection", {})
|
||||
classification_result = pipeline_data.stage_results.get("fire_classification", {})
|
||||
|
||||
print(f"Detection: {detection_result.get('result', 'Unknown')} "
|
||||
f"(Prob: {detection_result.get('probability', 0.0):.3f})")
|
||||
print(f"Classification: {classification_result.get('result', 'Unknown')} "
|
||||
f"(Combined: {classification_result.get('combined_probability', 0.0):.3f})")
|
||||
print(f"Processing Time: {pipeline_data.metadata.get('total_processing_time', 0.0):.3f}s")
|
||||
print("-" * 50)
|
||||
|
||||
def handle_pipeline_stats(stats):
|
||||
"""Handle pipeline statistics"""
|
||||
print(f"\n📊 Pipeline Stats:")
|
||||
print(f" Submitted: {stats['pipeline_input_submitted']}")
|
||||
print(f" Completed: {stats['pipeline_completed']}")
|
||||
print(f" Errors: {stats['pipeline_errors']}")
|
||||
|
||||
for stage_stat in stats['stage_statistics']:
|
||||
print(f" Stage {stage_stat['stage_id']}: "
|
||||
f"Processed={stage_stat['processed_count']}, "
|
||||
f"AvgTime={stage_stat['avg_processing_time']:.3f}s")
|
||||
|
||||
# Stage 1: Object Detection
|
||||
stage1_config = StageConfig(
|
||||
stage_id="object_detection",
|
||||
port_ids=[28, 30], # First set of dongles
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="object_detection_520.nef",
|
||||
upload_fw=True,
|
||||
max_queue_size=30
|
||||
)
|
||||
|
||||
# Stage 2: Fire Classification
|
||||
stage2_config = StageConfig(
|
||||
stage_id="fire_classification",
|
||||
port_ids=[32, 34], # Second set of dongles
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="fire_classification_520.nef",
|
||||
upload_fw=True,
|
||||
max_queue_size=30,
|
||||
# Inter-stage processing
|
||||
input_preprocessor=PreProcessor(resize_fn=roi_extraction_preprocess),
|
||||
output_postprocessor=PostProcessor(process_fn=combine_detection_classification)
|
||||
)
|
||||
|
||||
# Create two-stage pipeline
|
||||
pipeline = InferencePipeline(
|
||||
stage_configs=[stage1_config, stage2_config],
|
||||
pipeline_name="TwoStageCascade"
|
||||
)
|
||||
|
||||
pipeline.set_result_callback(handle_cascade_result)
|
||||
pipeline.set_stats_callback(handle_pipeline_stats)
|
||||
|
||||
# Initialize and start
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
pipeline.start_stats_reporting(interval=10.0) # Stats every 10 seconds
|
||||
|
||||
# Process data
|
||||
# data_source = RTSPSource("rtsp://your-camera-url")
|
||||
data_source = WebcamSource(0)
|
||||
data_source.start()
|
||||
|
||||
try:
|
||||
frame_count = 0
|
||||
while frame_count < 200:
|
||||
frame = data_source.get_frame()
|
||||
if frame is not None:
|
||||
if pipeline.put_data(frame, timeout=1.0):
|
||||
frame_count += 1
|
||||
else:
|
||||
print("Pipeline input queue full, dropping frame")
|
||||
time.sleep(0.05)
|
||||
except KeyboardInterrupt:
|
||||
print("\nStopping cascade pipeline...")
|
||||
finally:
|
||||
data_source.stop()
|
||||
pipeline.stop()
|
||||
|
||||
# =============================================================================
|
||||
# Example 3: Complex Multi-Stage Pipeline
|
||||
# =============================================================================
|
||||
|
||||
def example_complex_pipeline():
|
||||
"""Complex multi-stage pipeline with feature extraction and fusion"""
|
||||
print("=== Complex Multi-Stage Pipeline Example ===")
|
||||
|
||||
# Custom processors for different stages
|
||||
def edge_detection_preprocess(frame, target_size):
|
||||
"""Extract edge features"""
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
edges = cv2.Canny(gray, 50, 150)
|
||||
edges_3ch = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
|
||||
return cv2.resize(edges_3ch, target_size)
|
||||
|
||||
def thermal_simulation_preprocess(frame, target_size):
|
||||
"""Simulate thermal-like processing"""
|
||||
# Convert to HSV and extract V channel as pseudo-thermal
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
thermal_like = hsv[:, :, 2] # Value channel
|
||||
thermal_3ch = cv2.cvtColor(thermal_like, cv2.COLOR_GRAY2BGR)
|
||||
return cv2.resize(thermal_3ch, target_size)
|
||||
|
||||
def fusion_postprocess(raw_output, **kwargs):
|
||||
"""Fuse results from multiple modalities"""
|
||||
if raw_output.size > 0:
|
||||
current_prob = float(raw_output[0])
|
||||
|
||||
# This would get previous stage results from pipeline metadata
|
||||
# For demo, we'll simulate
|
||||
rgb_confidence = kwargs.get('rgb_conf', 0.5)
|
||||
edge_confidence = kwargs.get('edge_conf', 0.5)
|
||||
|
||||
# Weighted fusion
|
||||
fused_prob = (current_prob * 0.5) + (rgb_confidence * 0.3) + (edge_confidence * 0.2)
|
||||
|
||||
return {
|
||||
'fused_probability': fused_prob,
|
||||
'individual_probs': {
|
||||
'thermal': current_prob,
|
||||
'rgb': rgb_confidence,
|
||||
'edge': edge_confidence
|
||||
},
|
||||
'result': 'Fire Detected' if fused_prob > 0.6 else 'No Fire',
|
||||
'confidence': 'Very High' if fused_prob > 0.9 else 'High' if fused_prob > 0.7 else 'Medium' if fused_prob > 0.5 else 'Low'
|
||||
}
|
||||
return {'fused_probability': 0.0, 'result': 'No Fire', 'confidence': 'Low'}
|
||||
|
||||
# Stage 1: RGB Analysis
|
||||
rgb_stage = StageConfig(
|
||||
stage_id="rgb_analysis",
|
||||
port_ids=[28, 30],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="rgb_fire_detection_520.nef",
|
||||
upload_fw=True
|
||||
)
|
||||
|
||||
# Stage 2: Edge Feature Analysis
|
||||
edge_stage = StageConfig(
|
||||
stage_id="edge_analysis",
|
||||
port_ids=[32, 34],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="edge_fire_detection_520.nef",
|
||||
upload_fw=True,
|
||||
input_preprocessor=PreProcessor(resize_fn=edge_detection_preprocess)
|
||||
)
|
||||
|
||||
# Stage 3: Thermal-like Analysis
|
||||
thermal_stage = StageConfig(
|
||||
stage_id="thermal_analysis",
|
||||
port_ids=[36, 38],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="thermal_fire_detection_520.nef",
|
||||
upload_fw=True,
|
||||
input_preprocessor=PreProcessor(resize_fn=thermal_simulation_preprocess)
|
||||
)
|
||||
|
||||
# Stage 4: Fusion
|
||||
fusion_stage = StageConfig(
|
||||
stage_id="result_fusion",
|
||||
port_ids=[40, 42],
|
||||
scpu_fw_path="fw_scpu.bin",
|
||||
ncpu_fw_path="fw_ncpu.bin",
|
||||
model_path="fusion_520.nef",
|
||||
upload_fw=True,
|
||||
output_postprocessor=PostProcessor(process_fn=fusion_postprocess)
|
||||
)
|
||||
|
||||
# Create complex pipeline
|
||||
pipeline = InferencePipeline(
|
||||
stage_configs=[rgb_stage, edge_stage, thermal_stage, fusion_stage],
|
||||
pipeline_name="ComplexMultiModalPipeline"
|
||||
)
|
||||
|
||||
# Advanced result handling
|
||||
def handle_complex_result(pipeline_data):
|
||||
"""Handle complex pipeline results"""
|
||||
print(f"\n🔥 Multi-Modal Fire Detection Results:")
|
||||
print(f" Pipeline ID: {pipeline_data.pipeline_id}")
|
||||
|
||||
for stage_id, result in pipeline_data.stage_results.items():
|
||||
if 'probability' in result:
|
||||
print(f" {stage_id}: {result.get('result', 'Unknown')} "
|
||||
f"(Prob: {result.get('probability', 0.0):.3f})")
|
||||
|
||||
# Final fused result
|
||||
if 'result_fusion' in pipeline_data.stage_results:
|
||||
fusion_result = pipeline_data.stage_results['result_fusion']
|
||||
print(f" 🎯 FINAL: {fusion_result.get('result', 'Unknown')} "
|
||||
f"(Fused: {fusion_result.get('fused_probability', 0.0):.3f})")
|
||||
print(f" Confidence: {fusion_result.get('confidence', 'Unknown')}")
|
||||
|
||||
print(f" Total Processing Time: {pipeline_data.metadata.get('total_processing_time', 0.0):.3f}s")
|
||||
print("=" * 60)
|
||||
|
||||
def handle_error(pipeline_data):
|
||||
"""Handle pipeline errors"""
|
||||
print(f"❌ Pipeline Error for {pipeline_data.pipeline_id}")
|
||||
for stage_id, result in pipeline_data.stage_results.items():
|
||||
if 'error' in result:
|
||||
print(f" Stage {stage_id} error: {result['error']}")
|
||||
|
||||
pipeline.set_result_callback(handle_complex_result)
|
||||
pipeline.set_error_callback(handle_error)
|
||||
|
||||
# Initialize and start
|
||||
try:
|
||||
pipeline.initialize()
|
||||
pipeline.start()
|
||||
|
||||
# Simulate data input
|
||||
data_source = WebcamSource(camera_id=0)
|
||||
data_source.start()
|
||||
|
||||
print("🚀 Complex pipeline started. Processing frames...")
|
||||
|
||||
frame_count = 0
|
||||
start_time = time.time()
|
||||
|
||||
while frame_count < 50: # Process 50 frames for demo
|
||||
frame = data_source.get_frame()
|
||||
if frame is not None:
|
||||
if pipeline.put_data(frame):
|
||||
frame_count += 1
|
||||
if frame_count % 10 == 0:
|
||||
elapsed = time.time() - start_time
|
||||
fps = frame_count / elapsed
|
||||
print(f"📈 Processed {frame_count} frames, Pipeline FPS: {fps:.2f}")
|
||||
time.sleep(0.1)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in complex pipeline: {e}")
|
||||
finally:
|
||||
data_source.stop()
|
||||
pipeline.stop()
|
||||
|
||||
# Final statistics
|
||||
final_stats = pipeline.get_pipeline_statistics()
|
||||
print(f"\n📊 Final Pipeline Statistics:")
|
||||
print(f" Total Input: {final_stats['pipeline_input_submitted']}")
|
||||
print(f" Completed: {final_stats['pipeline_completed']}")
|
||||
print(f" Success Rate: {final_stats['pipeline_completed']/max(final_stats['pipeline_input_submitted'], 1)*100:.1f}%")
|
||||
|
||||
# =============================================================================
|
||||
# Main Function - Run Examples
|
||||
# =============================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="InferencePipeline Examples")
|
||||
parser.add_argument("--example", choices=["single", "cascade", "complex"],
|
||||
default="single", help="Which example to run")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.example == "single":
|
||||
example_single_stage()
|
||||
elif args.example == "cascade":
|
||||
example_two_stage_cascade()
|
||||
elif args.example == "complex":
|
||||
example_complex_pipeline()
|
||||
else:
|
||||
print("Available examples:")
|
||||
print(" python pipeline_example.py --example single")
|
||||
print(" python pipeline_example.py --example cascade")
|
||||
print(" python pipeline_example.py --example complex")
|
||||
Loading…
x
Reference in New Issue
Block a user