fix: Correct FPS calculation and reduce log spam

Key fixes:
1. FPS Calculation: Only count actual inference results, not frame processing
   - Previous: counted every frame processed (~90 FPS, incorrect)
   - Now: only counts when actual inference results are received (~9 FPS, correct)
   - Return None from _process_data when no inference result available
   - Skip FPS counting for iterations without real results

2. Log Reduction: Significantly reduced verbose logging
   - Removed excessive debug prints for preprocessing steps
   - Removed "No inference result" spam messages
   - Only log actual successful inference results

3. Async Processing: Maintain proper async pattern
   - Still use non-blocking get_latest_inference_result(timeout=0.001)
   - Still use non-blocking put_input(block=False)
   - But only count real inference throughput for FPS

This should now match standalone code behavior: ~4 FPS (1 dongle) vs ~9 FPS (2 dongles)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Masonmason 2025-07-24 11:12:42 +08:00
parent 67a1031009
commit 273ae71846

View File

@ -139,24 +139,29 @@ class PipelineStage:
# Process data through this stage # Process data through this stage
processed_data = self._process_data(pipeline_data) processed_data = self._process_data(pipeline_data)
# Record processing time # Only record processing and increment counter if we got a real result
processing_time = time.time() - start_time if processed_data is not None:
self.processing_times.append(processing_time) # Record processing time
if len(self.processing_times) > 1000: # Keep only recent times processing_time = time.time() - start_time
self.processing_times = self.processing_times[-500:] self.processing_times.append(processing_time)
if len(self.processing_times) > 1000: # Keep only recent times
self.processing_times = self.processing_times[-500:]
self.processed_count += 1 self.processed_count += 1
# Put result to output queue # Put result to output queue
try:
self.output_queue.put(processed_data, block=False)
except queue.Full:
# Drop oldest and add new
try: try:
self.output_queue.get_nowait()
self.output_queue.put(processed_data, block=False) self.output_queue.put(processed_data, block=False)
except queue.Empty: except queue.Full:
pass # Drop oldest and add new
try:
self.output_queue.get_nowait()
self.output_queue.put(processed_data, block=False)
except queue.Empty:
pass
else:
# No inference result - don't count this iteration
pass
except Exception as e: except Exception as e:
self.error_count += 1 self.error_count += 1
@ -189,9 +194,7 @@ class PipelineStage:
processed_data = None processed_data = None
if isinstance(current_data, np.ndarray) and len(current_data.shape) == 3: if isinstance(current_data, np.ndarray) and len(current_data.shape) == 3:
# Always use MultiDongle's preprocess_frame to ensure correct format # Always use MultiDongle's preprocess_frame to ensure correct format
print(f"[Stage {self.stage_id}] Preprocessing frame for MultiDongle...")
processed_data = self.multidongle.preprocess_frame(current_data, 'BGR565') processed_data = self.multidongle.preprocess_frame(current_data, 'BGR565')
print(f"[Stage {self.stage_id}] After MultiDongle preprocess: shape={processed_data.shape}, dtype={processed_data.dtype}")
# Validate processed data # Validate processed data
if processed_data is None: if processed_data is None:
@ -201,57 +204,39 @@ class PipelineStage:
elif isinstance(current_data, dict) and 'raw_output' in current_data: elif isinstance(current_data, dict) and 'raw_output' in current_data:
# This is result from previous stage, not suitable for direct inference # This is result from previous stage, not suitable for direct inference
print(f"[Stage {self.stage_id}] Warning: Received processed result instead of image data")
processed_data = current_data processed_data = current_data
else: else:
print(f"[Stage {self.stage_id}] Warning: Unexpected data type: {type(current_data)}")
processed_data = current_data processed_data = current_data
# Step 3: MultiDongle inference # Step 3: MultiDongle inference
if isinstance(processed_data, np.ndarray): if isinstance(processed_data, np.ndarray):
print(f"[Stage {self.stage_id}] Sending to MultiDongle: shape={processed_data.shape}, dtype={processed_data.dtype}")
self.multidongle.put_input(processed_data, 'BGR565', block=False) self.multidongle.put_input(processed_data, 'BGR565', block=False)
# Get inference result (non-blocking, async pattern like standalone code) # Get inference result (non-blocking, async pattern like standalone code)
result = self.multidongle.get_latest_inference_result(timeout=0.001) result = self.multidongle.get_latest_inference_result(timeout=0.001)
# Process result if available # Process result if available - only count actual inference results for FPS
inference_result = {} inference_result = None
has_real_result = False
if result is not None: if result is not None:
if isinstance(result, tuple) and len(result) == 2: if isinstance(result, tuple) and len(result) == 2:
# Handle tuple results like (probability, result_string) # Handle tuple results like (probability, result_string)
prob, result_str = result prob, result_str = result
if prob is not None and result_str is not None: if prob is not None and result_str is not None:
print(f"[Stage {self.stage_id}] Valid result: prob={prob}, result={result_str}") print(f"[Stage {self.stage_id}] Valid inference result: prob={prob}, result={result_str}")
inference_result = result inference_result = result
else: has_real_result = True
print(f"[Stage {self.stage_id}] Invalid tuple result: prob={prob}, result={result_str}") elif isinstance(result, dict) and result: # Non-empty dict
elif isinstance(result, dict): print(f"[Stage {self.stage_id}] ✅ Valid dict result: {result}")
if result: # Non-empty dict
print(f"[Stage {self.stage_id}] Valid dict result: {result}")
inference_result = result
else:
print(f"[Stage {self.stage_id}] Empty dict result")
else:
print(f"[Stage {self.stage_id}] Other result type: {type(result)}")
inference_result = result inference_result = result
else: has_real_result = True
# No result available - this is normal in async processing
print(f"[Stage {self.stage_id}] No result available (async processing)")
inference_result = {"status": "processing"}
# Handle result status (async processing doesn't need timeout warnings) # If no valid result, don't process this iteration for FPS counting
if (inference_result is None or if not has_real_result:
(isinstance(inference_result, dict) and inference_result.get("status") == "processing")): # Skip this iteration - no actual inference result to process
# This is normal in async processing - use previous result or default # (Don't spam logs - this is normal in async processing)
print(f"[Stage {self.stage_id}] Using async processing mode") return None # Return None to indicate no processing occurred
inference_result = {'probability': 0.0, 'result': 'Processing', 'status': 'async'}
elif (isinstance(inference_result, dict) and not inference_result) or \
(isinstance(inference_result, tuple) and (not inference_result or inference_result == (None, None))):
print(f"[Stage {self.stage_id}] No valid result available")
inference_result = {'probability': 0.0, 'result': 'No Result'}
else:
print(f"[Stage {self.stage_id}] ✅ Successfully received inference result: {inference_result}")
# Step 3: Output postprocessing (inter-stage) # Step 3: Output postprocessing (inter-stage)
processed_result = inference_result processed_result = inference_result