2025-05-28 00:15:48 +08:00

482 lines
17 KiB
Python

# ******************************************************************************
# Copyright (c) 2022. Kneron Inc. All rights reserved. *
# ******************************************************************************
import cv2
import numpy as np
#import scipy
from scipy.spatial.distance import cdist
#from cython_bbox import bbox_overlaps as bbox_ious
#import lap
def linear_sum_assignment(cost_matrix,
extend_cost=False,
cost_limit=np.inf,
return_cost=True):
"""Solve the linear sum assignment problem.
The linear sum assignment problem is also known as minimum weight matching
in bipartite graphs. A problem instance is described by a matrix C, where
each C[i,j] is the cost of matching vertex i of the first partite set
(a "worker") and vertex j of the second set (a "job"). The goal is to find
a complete assignment of workers to jobs of minimal cost.
Formally, let X be a boolean matrix where :math:`X[i,j] = 1` iff row i is
assigned to column j. Then the optimal assignment has cost
.. math::
\min \sum_i \sum_j C_{i,j} X_{i,j}
s.t. each row is assignment to at most one column, and each column to at
most one row.
This function can also solve a generalization of the classic assignment
problem where the cost matrix is rectangular. If it has more rows than
columns, then not every row needs to be assigned to a column, and vice
versa.
The method used is the Hungarian algorithm, also known as the Munkres or
Kuhn-Munkres algorithm.
Parameters
----------
cost_matrix : array
The cost matrix of the bipartite graph.
Returns
-------
row_ind, col_ind : array
An array of row indices and one of corresponding column indices giving
the optimal assignment. The cost of the assignment can be computed
as ``cost_matrix[row_ind, col_ind].sum()``. The row indices will be
sorted; in the case of a square cost matrix they will be equal to
``numpy.arange(cost_matrix.shape[0])``.
Notes
-----
.. versionadded:: 0.17.0
Examples
--------
>>> cost = np.array([[4, 1, 3], [2, 0, 5], [3, 2, 2]])
>>> from scipy.optimize import linear_sum_assignment
>>> row_ind, col_ind = linear_sum_assignment(cost)
>>> col_ind
array([1, 0, 2])
>>> cost[row_ind, col_ind].sum()
5
References
----------
1. http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
2. Harold W. Kuhn. The Hungarian Method for the assignment problem.
*Naval Research Logistics Quarterly*, 2:83-97, 1955.
3. Harold W. Kuhn. Variants of the Hungarian method for assignment
problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956.
4. Munkres, J. Algorithms for the Assignment and Transportation Problems.
*J. SIAM*, 5(1):32-38, March, 1957.
5. https://en.wikipedia.org/wiki/Hungarian_algorithm
"""
cost_c = cost_matrix
n_rows = cost_c.shape[0]
n_cols = cost_c.shape[1]
n = 0
if n_rows == n_cols:
n = n_rows
else:
if not extend_cost:
raise ValueError(
'Square cost array expected. If cost is intentionally '
'non-square, pass extend_cost=True.')
if extend_cost or cost_limit < np.inf:
n = n_rows + n_cols
cost_c_extended = np.empty((n, n), dtype=np.double)
if cost_limit < np.inf:
cost_c_extended[:] = cost_limit / 2.
else:
cost_c_extended[:] = cost_c.max() + 1
cost_c_extended[n_rows:, n_cols:] = 0
cost_c_extended[:n_rows, :n_cols] = cost_c
cost_matrix = cost_c_extended
cost_matrix = np.asarray(cost_matrix)
if len(cost_matrix.shape) != 2:
raise ValueError("expected a matrix (2-d array), got a %r array" %
(cost_matrix.shape, ))
# The algorithm expects more columns than rows in the cost matrix.
if cost_matrix.shape[1] < cost_matrix.shape[0]:
cost_matrix = cost_matrix.T
transposed = True
else:
transposed = False
state = _Hungary(cost_matrix)
# No need to bother with assignments if one of the dimensions
# of the cost matrix is zero-length.
step = None if 0 in cost_matrix.shape else _step1
while step is not None:
step = step(state)
if transposed:
marked = state.marked.T
else:
marked = state.marked
return np.where(marked == 1)
class _Hungary(object):
"""State of the Hungarian algorithm.
Parameters
----------
cost_matrix : 2D matrix
The cost matrix. Must have shape[1] >= shape[0].
"""
def __init__(self, cost_matrix):
self.C = cost_matrix.copy()
n, m = self.C.shape
self.row_uncovered = np.ones(n, dtype=bool)
self.col_uncovered = np.ones(m, dtype=bool)
self.Z0_r = 0
self.Z0_c = 0
self.path = np.zeros((n + m, 2), dtype=int)
self.marked = np.zeros((n, m), dtype=int)
def _clear_covers(self):
"""Clear all covered matrix cells"""
self.row_uncovered[:] = True
self.col_uncovered[:] = True
# Individual steps of the algorithm follow, as a state machine: they return
# the next step to be taken (function to be called), if any.
def _step1(state):
"""Steps 1 and 2 in the Wikipedia page."""
# Step 1: For each row of the matrix, find the smallest element and
# subtract it from every element in its row.
state.C -= state.C.min(axis=1)[:, np.newaxis]
# Step 2: Find a zero (Z) in the resulting matrix. If there is no
# starred zero in its row or column, star Z. Repeat for each element
# in the matrix.
for i, j in zip(*np.where(state.C == 0)):
if state.col_uncovered[j] and state.row_uncovered[i]:
state.marked[i, j] = 1
state.col_uncovered[j] = False
state.row_uncovered[i] = False
state._clear_covers()
return _step3
def _step3(state):
"""
Cover each column containing a starred zero. If n columns are covered,
the starred zeros describe a complete set of unique assignments.
In this case, Go to DONE, otherwise, Go to Step 4.
"""
marked = (state.marked == 1)
state.col_uncovered[np.any(marked, axis=0)] = False
if marked.sum() < state.C.shape[0]:
return _step4
def _step4(state):
"""
Find a noncovered zero and prime it. If there is no starred zero
in the row containing this primed zero, Go to Step 5. Otherwise,
cover this row and uncover the column containing the starred
zero. Continue in this manner until there are no uncovered zeros
left. Save the smallest uncovered value and Go to Step 6.
"""
# We convert to int as numpy operations are faster on int
C = (state.C == 0).astype(int)
covered_C = C * state.row_uncovered[:, np.newaxis]
covered_C *= np.asarray(state.col_uncovered, dtype=int)
n = state.C.shape[0]
m = state.C.shape[1]
while True:
# Find an uncovered zero
row, col = np.unravel_index(np.argmax(covered_C), (n, m))
if covered_C[row, col] == 0:
return _step6
else:
state.marked[row, col] = 2
# Find the first starred element in the row
star_col = np.argmax(state.marked[row] == 1)
if state.marked[row, star_col] != 1:
# Could not find one
state.Z0_r = row
state.Z0_c = col
return _step5
else:
col = star_col
state.row_uncovered[row] = False
state.col_uncovered[col] = True
covered_C[:,
col] = C[:, col] * (np.asarray(state.row_uncovered,
dtype=int))
covered_C[row] = 0
def _step5(state):
"""
Construct a series of alternating primed and starred zeros as follows.
Let Z0 represent the uncovered primed zero found in Step 4.
Let Z1 denote the starred zero in the column of Z0 (if any).
Let Z2 denote the primed zero in the row of Z1 (there will always be one).
Continue until the series terminates at a primed zero that has no starred
zero in its column. Unstar each starred zero of the series, star each
primed zero of the series, erase all primes and uncover every line in the
matrix. Return to Step 3
"""
count = 0
path = state.path
path[count, 0] = state.Z0_r
path[count, 1] = state.Z0_c
while True:
# Find the first starred element in the col defined by
# the path.
row = np.argmax(state.marked[:, path[count, 1]] == 1)
if state.marked[row, path[count, 1]] != 1:
# Could not find one
break
else:
count += 1
path[count, 0] = row
path[count, 1] = path[count - 1, 1]
# Find the first prime element in the row defined by the
# first path step
col = np.argmax(state.marked[path[count, 0]] == 2)
if state.marked[row, col] != 2:
col = -1
count += 1
path[count, 0] = path[count - 1, 0]
path[count, 1] = col
# Convert paths
for i in range(count + 1):
if state.marked[path[i, 0], path[i, 1]] == 1:
state.marked[path[i, 0], path[i, 1]] = 0
else:
state.marked[path[i, 0], path[i, 1]] = 1
state._clear_covers()
# Erase all prime markings
state.marked[state.marked == 2] = 0
return _step3
def _step6(state):
"""
Add the value found in Step 4 to every element of each covered row,
and subtract it from every element of each uncovered column.
Return to Step 4 without altering any stars, primes, or covered lines.
"""
# the smallest uncovered value in the matrix
if np.any(state.row_uncovered) and np.any(state.col_uncovered):
minval = np.min(state.C[state.row_uncovered], axis=0)
minval = np.min(minval[state.col_uncovered])
state.C[~state.row_uncovered] += minval
state.C[:, state.col_uncovered] -= minval
return _step4
def bbox_ious(boxes, query_boxes):
"""
Parameters
----------
boxes: (N, 4) ndarray of float
query_boxes: (K, 4) ndarray of float
Returns
-------
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
DTYPE = np.float32
N = boxes.shape[0]
K = query_boxes.shape[0]
overlaps = np.zeros((N, K), dtype=DTYPE)
for k in range(K):
box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + 1) *
(query_boxes[k, 3] - query_boxes[k, 1] + 1))
for n in range(N):
iw = (min(boxes[n, 2], query_boxes[k, 2]) -
max(boxes[n, 0], query_boxes[k, 0]) + 1)
if iw > 0:
ih = (min(boxes[n, 3], query_boxes[k, 3]) -
max(boxes[n, 1], query_boxes[k, 1]) + 1)
if ih > 0:
ua = float((boxes[n, 2] - boxes[n, 0] + 1) *
(boxes[n, 3] - boxes[n, 1] + 1) + box_area -
iw * ih)
overlaps[n, k] = iw * ih / ua
return overlaps
chi2inv95 = {
1: 3.8415,
2: 5.9915,
3: 7.8147,
4: 9.4877,
5: 11.070,
6: 12.592,
7: 14.067,
8: 15.507,
9: 16.919}
def linear_assignment(cost_matrix, thresh):
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
'''
matches, unmatched_a, unmatched_b = [], [], []
# https://blog.csdn.net/u014386899/article/details/109224746
#https://github.com/gatagat/lap
# https://github.com/gatagat/lap/blob/c2b6309ba246d18205a71228cdaea67210e1a039/lap/lapmod.py
cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
#extend_cost: whether or not extend a non-square matrix [default: False]
#cost_limit: an upper limit for a cost of a single assignment
# [default: np.inf]
for ix, mx in enumerate(x):
if mx >= 0:
matches.append([ix, mx])
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]
matches = np.asarray(matches)
return matches, unmatched_a, unmatched_b
'''
cost_matrix_r, cost_matrix_c = cost_matrix.shape[:2]
r, c = linear_sum_assignment(cost_matrix,
extend_cost=True,
cost_limit=thresh)
sorted_c = sorted(range(len(c)), key=lambda k: c[k])
sorted_c = sorted_c[:cost_matrix_c]
sorted_c = np.asarray(sorted_c)
matches_c = []
for ix, mx in enumerate(c):
if mx < cost_matrix_c and ix < cost_matrix_r:
matches_c.append([ix, mx])
cut_c = c[:cost_matrix_r]
unmatched_r = np.where(cut_c >= cost_matrix_c)[0]
unmatched_c = np.where(sorted_c >= cost_matrix_r)[0]
matches_c = np.asarray(matches_c)
return matches_c, unmatched_r, unmatched_c
def computeIOU(rec1, rec2):
cx1, cy1, cx2, cy2 = rec1
gx1, gy1, gx2, gy2 = rec2
S_rec1 = (cx2 - cx1 + 1) * (cy2 - cy1 + 1)
S_rec2 = (gx2 - gx1 + 1) * (gy2 - gy1 + 1)
x1 = max(cx1, gx1)
y1 = max(cy1, gy1)
x2 = min(cx2, gx2)
y2 = min(cy2, gy2)
w = max(0, x2 - x1 + 1)
h = max(0, y2 - y1 + 1)
area = w * h
iou = area / (S_rec1 + S_rec2 - area)
return iou
def ious(atlbrs, btlbrs):
"""
Compute cost based on IoU
:type atlbrs: list[tlbr] | np.ndarray
:type atlbrs: list[tlbr] | np.ndarray
:rtype ious np.ndarray
"""
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
if ious.size == 0:
return ious
ious = bbox_ious(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32)
)
return ious
def iou_distance(atracks, btracks):
"""
Compute cost based on IoU
:type atracks: list[STrack]
:type btracks: list[STrack]
:rtype cost_matrix np.ndarray
"""
if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks]
_ious = ious(atlbrs, btlbrs)
cost_matrix = 1 - _ious
return cost_matrix
#https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
def embedding_distance(tracks, detections, metric='cosine'):
"""
:param tracks: list[STrack]
:param detections: list[BaseTrack]
:param metric:
:return: cost_matrix np.ndarray
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
#for i, track in enumerate(tracks):
#cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
return cost_matrix
def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False):
if cost_matrix.size == 0:
return cost_matrix
gating_dim = 2 if only_position else 4
gating_threshold = chi2inv95[gating_dim]
measurements = np.asarray([det.to_xyah() for det in detections])
for row, track in enumerate(tracks):
gating_distance = kf.gating_distance(
track.mean, track.covariance, measurements, only_position)
cost_matrix[row, gating_distance > gating_threshold] = np.inf
return cost_matrix
def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98):
if cost_matrix.size == 0:
return cost_matrix
gating_dim = 2 if only_position else 4
gating_threshold = chi2inv95[gating_dim]
measurements = np.asarray([det.to_xyah() for det in detections])
for row, track in enumerate(tracks):
gating_distance = kf.gating_distance(
track.mean, track.covariance, measurements, only_position, metric='maha')
cost_matrix[row, gating_distance > gating_threshold] = np.inf
cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance
return cost_matrix
def fuse_score(cost_matrix, detections):
if cost_matrix.size == 0:
return cost_matrix
iou_sim = 1 - cost_matrix
det_scores = np.array([det.score for det in detections])
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
fuse_sim = iou_sim * det_scores
fuse_cost = 1 - fuse_sim
return fuse_cost